THE SUSTAINABLE DEVELOPMENT GOALS

As an instrument of international cooperation, the SCO is in line with the Paris Agreement and the UN’s Sustainable Development Goals.

THEMES OF SCO PROJECTS

The projects that received the SCO certification label cover a variety of themes across different types of territories.

THEMES

- Land Use
- Biodiversity
- Carbon
- Energy
- Extreme Meteo
- Agriculture
- Health
- Water Management
- Education
- Natural disaster response

ENVSIRONMENTS

- Coastal
- Mountain
- Urban
- Rural
- Forest
- Atmosphere
- Ocean
- Tropical
n 2017, during the first One Planet Summit, the Space Climate Observatory (SCO) initiative was born to fully leverage the potential of Earth observation data in the adaptation and fight against climate change. Two years later, the French President officially announced its launch during the Paris Air Show, where twenty-three space agencies and international organizations met to sign the Joint declaration of interest.

Today, with thirty-six partners and more than forty projects around the world, the international network formed by the SCO has become a major player in the field of organizations relying on increasingly available satellite data to contribute to the climate effort. Within this ecosystem, our country and the national space agency (CNES) have played a leading role, as demonstrated by the vitality of the SCO France. Thanks to the mobilization of numerous French scientific organizations alongside public institutions and private companies, the general public and local decision-makers are gradually gaining access to crucial tools to better understand and anticipate present and future climate challenges – be it about extreme weather events, water and forest management policies, or prospects for adapting our cities and countryside. These projects now allow many territories to move forward with resilient actions that are essential to the fight against global warming.

In the aftermath of COP 26 and the renewed affirmation of the international commitment to climate action, the continued involvement of such a large group of actors in this initiative augurs well for the future of Earth observation for our environment. This first congress of the SCO France, and this opportunity to meet you all in person, is the occasion for CNES to emphasize once again its ambition to cooperate with the whole French ecosystem to come up with innovative solutions, and to express its gratitude to those who walk this path with us – in hope that it is only the beginning.

Philippe BAPTISTE
President and CEO of CNES
Introduction

This SCO Portfolio is a testament to the dynamism and energy that have been invested towards the development of SCO France over the last two years. These two years have made it possible for the national community, the French public research and development institutions as well as stakeholders in a burgeoning private ecosystem, to gain access to an instrument to promote the use of Earth observation data to combat climate change. It is also an opportunity to showcase, through operational applications, the power of these tools to decision-makers in charge of territorial management.

The SCO France is an inclusive initiative, with a robust accreditation mechanism. We cannot thank enough the members of the labeling committee who gave their time as well as the members of the Interagency Committee who worked together despite the difficulties caused by the health crisis.

The SCO France has thus built up a portfolio of projects, as shown in this SCO Portfolio, which brings together a great diversity of themes, methodologies, data and actors. 110 institutions and 30 companies took part in the first two years of the initiative. At CNES, around 20 engineers devote part of their time to SCO and ensure that the 36 French projects run smoothly.

The SCO France acts as a driver of the broader global initiative, and endeavors to gain visibility by promoting the projects on the international scene, in order to contribute to the objectives of adaptation of our societies to climate change.

Laurence Monnoyer-Smith and Frédéric Bretar, in charge of the SCO France at CNES
GATHER AND ACT FOR OUR PLANET

08 | The SCO international

09 | The SCO France

12 | Words from SCO

SCO-CERTIFIED PROJECTS

20 | Urban adaptation | 4
City Explorer
Green Urban Sat
SatLCZ
Thermocity

24 | Agriculture | 5
MEO Climate Gers
MexiCorn
SCOlive
Space4IRRIG
VIMESCO Rice

29 | Biodiversity | 7
Cartovege
EOM Mountain Pastoralism
HABITAT Yangtze
Mangroves
Migr Safe
ORION
TAHATAI

39 | Education | 1
EducSCO

40 | Water management | 7
BOSCO Brittany
ECLAI
EOM Drought Monitoring
IRRISAT Morocco
OpHySE
SAM Tool Alert
Stock Water

51 | Health | 3
Arbocarto V2
ClimHealth
Podcast Demo

36 | Carbon | 3
C Monitor France
Open GCS
Quantica

47 | Land Use | 4
ADOPT
Choê Chua
Eagle Hedges
TropiSCO

54 | Vulnerability and adaptation to natural disasters | 8
BanD SOS
FLAude
FloodDAM
Guide Lapli
Littoscope
Monitoring the Gold Coast
OSS Saint Louis
Viet ARRO
Gather and act for our planet

A GLOBAL INITIATIVE TO STUDY AND ADAPT TO THE IMPACTS OF CLIMATE CHANGE
The SCO international

The Space Climate Observatory (SCO) is an international initiative of the One Planet Summit, officially launched in June 2019 by French President Emmanuel Macron. Bringing together space agencies from around the world and international organizations (UNDP, ESA, UNEP, UNOOSA), it aims to develop projects for local decision makers to help the adaptation to climate change. The projects monitor climate impacts on the territories using satellite data, in situ data and local socio-economic data. The SCO is in line with the international agreements of Paris, the 2030 Agenda for Sustainable Development, the United Nations Framework Convention on Climate Change (UNFCCC) and the strategies developed by the WMO and the Global Climate Observing System (GCOS).

The SCO France

The SCO France is the national declination of the international initiative. It is a national network whose goal is to bring together the scientific community, public authorities, and companies around the objectives of SCO International and the study of the impacts of climate change.

It aims to support projects carried out by French actors sharing the same objectives. The projects, led by consortia, are selected through calls for proposals. The Operating Charter of the SCO France is available on the website.

The members of the SCO France

INTERAGENCY COMMITTEE

[Logos of various organizations involved in the SCO]
The objectives

The primary objective of the SCO is to **offer decision support tools to observe, evaluate and anticipate the impacts of climate change**. This involves historical data analysis, development of impact scenarios, and projections of changes in the territories and their consequences on the populations in order to help decision-makers respond to the challenges of adaptation. Based on the pooling of existing data produced by international programs (Copernicus, NOAA, Eumetsat, etc.) and existing national climate services (DRIAS, etc.), the SCO promotes the interoperability of local socio-economic data (population, urbanization, protected areas, agriculture, linear and local infrastructures, etc.) in order to provide decision-makers with key data allowing a precise analysis of the vulnerability of their territory to climate change. This is a unique initiative, which provides concrete help to territories by enhancing the use of satellite data.

The second objective is to **adapt and implement the methodologies and tools to other territories in the world in order to have a comprehensive and quantified assessment of the situation**. The SCO thus contributes to the adaptation component of the Paris Agreement in a coordinated manner at the international level with common metrics for relevant sectors. The adaptability of tools at national and local levels benefits from digital innovations such as Artificial Intelligence.

Finally, a long-term objective is to **work towards providing policy makers in all countries with the same set of tools** and to build internationally recognized models, allowing for an objective assessment of the impact of public policies in the fight against climate change at the relevant scales.
From scientists of all disciplines to engineers and local actors, the SCO is above all a wonderful story of men and women. Exchanging and merging their skills and fields, they are all driven by the same conviction: we can change our course. Here are some extracts from our monthly «One-to-One».

«The SCO was missing in the international panorama of initiatives towards climate, especially in helping countries meet their responsibilities and commitments.»
Giovanni Rum, ASI’s point of contact for the SCO

«The mechanism put in place is now time-tested: today the SCO France represents about 250 people from 110 institutions and 30 companies!»
Frédéric Bretar, head of the SCO at CNES

«This construction of the SCO, scaled at the level of the territories and local needs, and this endeavor to go and seek or enrich tools on an international scale is completely in tune with what IRD is working on with its partners in the South.»
Céline Mari, Director of IRD’s DISCO scientific department

«In the call for projects and in the evaluation of the proposals submitted, I felt a drive to ensure a better transfer of R&D actions to public and private end-users, and to amplify the production of climate services for various decision-makers.»
Gilles Grandjean, Director of the scientific program on natural risks and territorial resilience at BRGM

«30 countries united in such a short time, it’s fabulous. Let everyone come and contribute their data so that it can benefit others as quickly as possible.»
Bertrand Frot, UNDP Deputy CIO

«How do we leave a better world for our children? When we see today how COVID 19 dictates the weather, let’s make sure we don’t get there with climate change.»
Aboubakar Ndjourou Mambimba, Deputy Director General of the Gabonese Space Agency AGEOS

«Climate change will be increasingly present on the political agenda and territories will have to launch adaptation initiatives. Between daily observations, event analysis and future projections, the SCO brings a family of tools that are very useful to territories.»
Jean-Michel Soubeyroux, Deputy Scientific Director of Climatology and Climate Services

«We are not specialists in spatial data, but some members of SCO France are. For me, the interest is there: to bring together beneficiary users with institutions that know how to manipulate in situ and spatial data, to develop ad hoc algorithms.»
François Hissel, Director of Monitoring, Assessment and Data at the OFB

«The SCO France offers an exemplary link between scientists, companies, local authorities and public authorities to think about sustainable solutions, including internationally. In fact, at the global level, this role can be increased tenfold.»
Nicolas Arnaud, Director of the French National Institute for the Sciences of the Universe (CNRS-INSU)
Obtaining the SCO certification label for a project means adhering to the SCO values and benefitting from international recognition. The label awarded by a local SCO is recognized by the International SCO.

In two years, the SCO has certified 43 projects tested in 66 territories of which 36 projects are supported by SCO France.

In the context of climate change, SCO projects develop operational decision support tools for the mitigation or the adaptation to the impacts of climate change in a maximum of 24 months.
SCO Portfolio

Respond to proven needs and replicate the developed solutions

SCO projects are developed at the local level in partnership with local stakeholders to respond to their specific needs and problems. Once operational, the tools must be adaptable to fit other places in the world.

Spatial data

Optical, radar, thermal, altimetric, atmospheric and meteorological satellites... high and very high resolution space data time series are at the heart of each SCO project. Alone or, most of the time, combined with other data sets (field measurements, socio-economic data, citizen data...), they feed scientific models to transform them into operational decision support tools.

The SCO France labelling process

Every year in September, SCO France launches its call for projects. The proposals are studied by a labeling committee that verifies their feasibility and their adequacy to the SCO criteria. This process is detailed in the SCO France Charter and is shared with other national SCOs that wish to draw inspiration from it.

Projects development

In order to ensure that the resulting outcomes are beneficial to everyone, the promoters of the labeled projects are committed to carrying out actions of valorization: reusing elements of the code in a new application, sharing expertise, etc. Available online, a Valorization Guide has been designed to help project leaders with this pooling effort.
Deforestation in Bolivia in favor of agricultural land. © Copernicus Sentinel Data 2019

SCO-certified projects

URBAN ADAPTATION • AGRICULTURE
BIODIVERSITY • CARBON • EDUCATION
WATER MANAGEMENT • LAND USE
HEALTH • VULNERABILITY AND
ADAPTATION TO NATURAL
DISASTERS

- Deforestation in Bolivia in favor of agricultural land. © Copernicus Sentinel Data 2019
City Explorer

OBJECTIVE
Provide a planning tool that, by mapping the expected ecosystem services of urban green and blue spaces, can simulate and compare the relative benefits of new locations.

SATELLITES
Sentinel-1 & 2, ESA CC Soil Moisture, LandSat-8

TERRITORY OF EXPERIMENTATION
Paris (France)

DURATION OF EXPERIMENTATION
10 months

EXPECTED RESULTS
Demonstrator City Explorer R-shiny App allowing to:
- Weighting land use parameters and socio-demographic data;
- Modeling implementation scenarios around three ecosystem services: PM2.5 fine particle removal, traffic noise attenuation, and cooling.

PARTNERS
ESA, Future Earth, REGREEN, UK Centre for Ecology & Hydrology

Green Urban Sat

OBJECTIVE
To generate a geospatial database of fine-grained descriptions of vegetation that is suitable for assessing the ecosystem services it provides in urban areas.

SATELLITES
Pleiades and Pleiades Neo

TERRITORY OF EXPERIMENTATION
Nancy, Strasbourg (France)

DURATION OF EXPERIMENTATION
24 months

EXPECTED RESULTS
- Online interface with quantitative and qualitative vegetation indicators;
- Algorithmic codes available on the Cerema’s Théia or Github platform.

PARTNERS
Cerema, Terranis, Live, Metropole Grand Nancy, CNES, A2S

THEMES

THE SUSTAINABLE DEVELOPMENT GOALS

Example of vegetation extraction from a Pleiades image of Toulouse. © Terranis
SatLCZ
IDENTIFYING THE VULNERABILITY OF URBAN ENVIRONMENTS DURING SUMMER HEAT WAVES

OBJECTIVE ACHIEVED
To reduce the vulnerability of cities during summer heat waves, the project has implemented an automatic methodology to classify urban environments into LCZs (Local Climate Zones), derived exclusively from very high resolution satellite images.

SATELLITES
Pleiades

TERRITORIES OF EXPERIMENTATION
Lille (France), Rayong (Thailand)

RESULT
- Final report describing the methodology;
- LCZ classification in shapefile format;
- Imperviousness Rate and Vegetation Rate Indicators;
- Socio-economic vulnerability index.

DURATION OF EXPERIMENTATION
12 months

PARTNERS
Cerema, AIRBUS Defence & Space, CNES

Thermocity
ADAPTING CITIES TO HEAT WAVES

OBJECTIVE ACHIEVED
To develop a tool for analyzing urban thermography to support the development policy at the scale of a metropolis.

SATELLITES
Sentinel-2, SPOT6/7, Pleiades, ECOSTRESS, Landsat-8

TERRITORIES OF EXPERIMENTATION
Toulouse, Paris, Marseille, Montpellier, Strasbourg (France)

EXPECTED RESULTS
Internet portal for the visualization of processed and generated data:
- Thermography and derived products (heat islands, hot spots...)
- Optical images
- Land use
- Digital surface model
- Models: heat islands and energy loss
- Development proposals

DURATION OF EXPERIMENTATION
18 months

PARTNERS
ONERA, CNES, Météo-France, CSTB

The following images show the results of the projects:
- SatLCZ image of Lille (left) and associated LCZ mapping (buildings, vegetation, rocks, soil...). © SatLCZ
- Surface temperature at the Strasbourg Eurometropolis on 22/06/2018 at 21:26. © UTM. ONERA
MEO–Climate Gers

THEMES

- The Sustainable Development Goals

OBJECTIVE

to map spatial and temporal evolutions of rural territories for a proximity piloting of actions in terms of cultivation practices, implementation of renewable energy and management of water reserves.

SATELLITES
Sentinel-1 & 2, SPOT6/7, Pleiades

TERRITORY OF EXPERIMENTATION
SCOT of Gascony, Gers (France)

EXPECTED RESULTS
Web platform open to communities delivering 3 indicators:
- Water Reserve: diagnosis of water reserves and their agricultural use;
- Green Energy: detection of photovoltaic installations and suitable locations;
- AgriPractice: monitoring of agricultural practices.

DURATION OF EXPERIMENTATION
12 months

PARTNERS
MEOSS, SCOT de Gascogne

Demonstration of the AgriPractice service: annual summary of vegetation cover. © MEOSS

MexiCorn

THEMES

- The Sustainable Development Goals

OBJECTIVE

to create an operational tool using optical and microwave satellite data to monitor corn field parameters and reduce the impact of climate change on crop yield.

SATELLITES
Sentinel-1, Landsat, MODIS, SMAP, SMOS

TERRITORY OF EXPERIMENTATION
Huamantla (Mexico)

EXPECTED RESULTS
The following products will be available for free access:
- Monthly map of corn growing areas;
- Weekly soil moisture map;
- Weekly vegetation water content map;
- Results of analyses on the climate impact of the observed changes.

DURATION OF EXPERIMENTATION
24 months

PARTNERS
National Polytechnic Institute of Mexico, Mexican Space Agency AEM, Universidad Iberoamericana, CentroGeo

A producer of a wide variety of native corn, Mexico is severely affected by atypical drought periods. © Getty Images
SCOlive

OBJECTIVE
To map, by associating all the actors in the field, the diseases and parasites harmful to the olive tree in order to establish a predictive model to anticipate and remedy them.

SATELLITES
Pleiades, Sentinel-2 & 3

TERRITORY OF EXPERIMENTATION
Grasse (France)

DURATION OF EXPERIMENTATION
18 months

EXPECTED RESULTS
• Creation of a free observation database;
• The results of the studies aimed at defining the conditions of occurrence of the diseases will be made public through scientific communications;
• The tools used and the methods are transposable to all regions of the world.

PARTNERS
ACRI-ST, Communauté d’agglomération du pays de Grasse, ARGANS France, CNES

THEMES
THE SUSTAINABLE DEVELOPMENT GOALS

Space4IRRIG

OBJECTIVE
To provide water managers with indicators to improve their knowledge of their territory and identify effective strategies for the future.

SATELLITES
Sentinel-1 & 2

TERRITORIES OF EXPERIMENTATION
Watersheds of the Tarn-Aval and the Durance Valley (France)

DURATION OF EXPERIMENTATION
24 months

EXPECTED RESULTS
Online platform producing maps of soil moisture at very high spatial resolution (plot scale), irrigated crops and crop water requirements. These maps will be updated every month.

PARTNERS
CESBIO, MEOSS, Chambre d’Agriculture du Tarn, Smavd Durance, Chambres d’Agriculture Tarn/ Occitanie/PACA, BRGM, SCP, CNES

THEMES
THE SUSTAINABLE DEVELOPMENT GOALS

80% of the food needs expected in 2025 will be covered by irrigated agriculture. © Getty Images
VIMESCO-Rice

OBJECTIVE
To provide operational tools for dynamic monitoring of rice production in Vietnam using radar remote sensing. While this project focuses on the effects of slow-onset climate change phenomena (droughts, floods, saltwater intrusion, etc.), the Viet-ARRO component (see p. 65) emphasizes the impacts of extreme events.

SATELLITES Sentinel-1

TERRITORY OF EXPERIMENTATION
Mekong Delta (Vietnam)

EXPECTED RESULTS
Internet portal giving free access to processed and generated data:
- Monthly map of rice growing areas;
- Monthly growth stage map;
- Annual crop density map (number of crops per year);
- Analysis results on the climate impact of the observed changes.

DURATION OF EXPERIMENTATION
18 months

PARTNERS
CNES, UNDP, IRD, VAST, USTH, VNSC, CESBIO, Toulouse School of Economics, GlobEO

EXAMPLE OF RICE GROWTH STAGE MAPPING IN THE MEKONG DELTA REGION © GLOBEO

Cartovege

OBJECTIVE
To develop a decision support tool for the conservation of flora and the preservation of habitats in the Crozet and Kerguelen archipelagos (French Southern and Antarctic Lands).

SATELLITES
Pleiades, Spot 6/7, WorldView, QuickBird, ALOS, Sentinel-1 (non exhaustive list)

EXPECTED RESULTS
- Creation of a geo-referenced database of vegetation and habitats;
- Production of a first typology of plant formations;
- Habitat and vegetation modeling mapping;
- Predictions of plant distribution changes;
- And more, scan the QR Code!

PARTNERS
University of Rennes 1, Ecobio Rennes, UMS Patrinat, French Southern Territories Nature Reserve, INRAE, CNRS, University Lyon 1, French Polar Institute, CNES

EXPECTED RESULTS
- Creation of a geo-referenced database of vegetation and habitats;
- Production of a first typology of plant formations;
- Habitat and vegetation modeling mapping;
- Predictions of plant distribution changes;
- And more, scan the QR Code!
EO4Mountain-Pastoralism

OBJECTIVE
To propose advanced statistical indicators to document the evolution of high altitude wetlands from Sentinel data, with the originality of correlating physical indicators to expected ecosystem services.

SATELLITES
Sentinel-1 & 2, SPOT 7, Pleiades

TERRITORY OF EXPERIMENTATION
Mercantour National Park (France)

DURATION OF EXPERIMENTATION
24 months

EXPECTED RESULTS
- Production of harmonized and merged attribute cubes at the territory level;
- Creation and production of environmental/eco-hydrological indicators;
- Integration of indicators in a cartographic interface;
- Indicator interpretation sheets and training for the use of products and services.

PARTNERS
EOST, Mercantour National Park, A2S, iPGP, Séolane, CNES

HABITAT Yangtze

OBJECTIVE
To provide a high spatial and temporal resolution database on wetlands in the middle and lower Yangtze River basin. The online tool will be used by wetland managers, researchers, and bird and climate change conservationists at local, national, and international levels.

TERRITORIES OF EXPERIMENTATION
Anhui Province (China): Shengjin Lake, Caizi Lake, Huayang Rivers & Lakes

EXPECTED RESULTS
Build Ecodata, a platform for monitoring and mapping waterbird wintering habitats in monitored wetlands.

SATELLITES
Gaofen-2 & 6, Landsat-8, Sentinel-2

DURATION OF EXPERIMENTATION
18 months

PARTNERS
Anhui University and its laboratories, Shengjin Lake National Nature Reserve

Wetlands in the Mercantour National Park. © PNM

Artificial intelligence detection of large-scale water bodies. © Wu, Yan-lan
Mangroves

OBJECTIVE
To understand and stop the destruction of mangroves, complex ecosystems that provide unique ecological and environmental functions.

SATELLITES
Pleiades, Sentinel-1 & 2, SPOT 6/7

TERRITORIES OF EXPERIMENTATION
Guyana, Martinique, Guadeloupe, Mayotte, French Polynesia, New Caledonia, Madagascar and, by extension, any territory with mangroves.

EXPECTED RESULTS
- User portal with spatial maps of their distribution and evolution, indicators of natural or anthropic pressures...
- Service platform for the operational monitoring of mangroves.

DURATION OF EXPERIMENTATION
36 months

PARTNERS
CNES, IRD, GEODEV, DINAMIS

Migr-Safe

OBJECTIVE
To carry out a study on the opportunity of a tool to help the preservation of migratory birds and the study of their behavior in the face of climate change and human activities.

SATELLITES
Free data from numerous observation satellites and the ARGOS/KINEIS telemetry system

TERRITORY OF EXPERIMENTATION
New Aquitaine, France

EXPECTED RESULTS
- Make spatial and regional data equitably accessible and manipulable to the scientific communities;
- Create new variables;
- Network stakeholders and create communication materials for the general public.

DURATION OF EXPERIMENTATION
5 months

PARTNERS
CLS, Aquitaine Regional Biodiversity Agency, CNES, New Aquitaine Chamber of Agriculture, GIFS, INRAE, UMR Tetis, GIP ATGeRI

THE SUSTAINABLE DEVELOPMENT GOALS

1. NO POVERTY
2. ZERO HUNGER
3. good health and well-being
4. clean water and sanitation
5. LIFE ON LAND
6. LIFE UNDERWATER
7. CLIMATE ACTION
8. WATER AND SANITATION
9. LIFE ON LAND
10. LIFE UNDERWATER
11. CLIMATE ACTION
12. GOOD HEALTH AND WELL-BEING
13. CLEAN WATER AND SANITATION
14. LIFE ON LAND
15. LIFE UNDERWATER
16. CLIMATE ACTION
17. LIFE ON LAND
18. LIFE UNDERWATER
19. CLIMATE ACTION
20. GOOD HEALTH AND WELL-BEING

Mangroves

Sentinel-2 image of Bombetoka Bay, Madagascar © Copernicus Sentinel data 2019

Migr-Safe

Tracking of the migration path on the Migr-Safe interface © CLS
ORION

OBJECTIVE

ORION, *biOdiverRsity Impacts of shrub expaNsion*, will provide operational services to decision-makers to manage the expansion of heathland in the Alpine region, a site emblematic of the effects of global warming.

SATELLITES

Sentinel-2

TERRITORY OF EXPERIMENTATION

Community of Communes of the Chamonix-Mont-Blanc Valley (France)

EXPECTED RESULTS

- High definition (10m) and replicable mapping of habitat distribution;
- Indicators of floristic diversity and large wild herbivore use;
- Mapping of areas at stake;
- Provision of indicators and data in GIS format.

DURATION OF EXPERIMENTATION

24 months

PARTNERS

LECA, CCVCMB, Asters CEN-74, CREA Mont-Blanc

TAHATAI

OBJECTIVE

Pacific-wide, develop, implement, automate and replicate a set of online digital resources, from satellite data to applications to expertise and indicators.

SATELLITES

Sentinel-1,2 & 3, Aqua, Terra MODIS, SPOT World Heritage, Pleiades, Pleiades Neo, WorldView, Future Co3D, ECMWF satellite weather data

TERRITORY OF EXPERIMENTATION

French Polynesia and New Caledonia

PARTNERS

Government of French Polynesia, DRM, IRD, BLUECHAM, CNES, QuintesensPty.Ltd, Copernicus Relays, CSIRO

EXPECTED RESULTS

Digital platform for the convergence of knowledge for each experimental site: vulnerability to different factors, state of coral reefs, marine biodiversity...
C-Monitor France

OBJECTIVE
To support political actions implemented at the European and national levels by providing an operational service for monitoring GHG and pollutant emissions at the finest possible spatial and temporal scale.

SATELLITES
Sentinel-1 & 2

TERRITORIES OF EXPERIMENTATION
France: Centre Val de Loire, New Aquitaine, Occitania, Paris

DURATION OF EXPERIMENTATION
24 months

PARTNERS
Atos, LSCE, CITEPA, KAYRROS

EXPECTED RESULTS
- Provision of near-real-time estimates of fossil CO2 emissions for five emitting sectors (land and air transport, power generation, industry, buildings).
- The tool could also be used to understand the impact of mobility changes related to the Covid-19 epidemic and its consequences on energy demand changes.

Open-GCS

OBJECTIVE
To provide dynamic monitoring of CO2 leakage from geological carbon sequestration sites for the benefit of safety assessment studies, environmental impact and risk control of this method.

SATLLITES
NASA AIRS, OCO-2, TROPOMI

TERRITORY OF EXPERIMENTATION
Qinshui Basin, Shanxi Province (China)

DURATION OF EXPERIMENTATION
18 months

PARTNERS
Chinese University of Mining and Technology (School of Resources and Geosciences, Artificial Intelligence Research Institute), China United Coalbed Methane Co.

EXPECTED RESULTS
- WSN Wireless Sensor Network Online Monitoring Data;
- Spatial distribution map of CO2 and CH4;
- Temporal (monthly, annual) variability of CO2 and CH4;
- Impact analysis of observed changes in the environment.

Global distribution map of the annual average XCO2 AIRS (from 6 to 8 km) between 2003 and 2011 © AIRS
Objectives

Quantica

To develop a tool combining plant-soil models with remote sensing to quantify, at the plot level, the additional carbon storage induced by intermediate crops. This is to ensure that farmers are more fairly remunerated for their use of these practices.

Satellites

Sentinel-2, Landsat-8, SPOT 6/7

Territory of Experimentation

Occitania region (France)

Duration of Experimentation

24 months

Expected Results

- Free access to the prototype tool for quantifying carbon storage induced by intermediate vegetation covers;
- Methodological guide describing the coupling of crop biophysical variables with growth and soil models (GMS) for the calculation of additional carbon stored by intermediate crops.

Partners

CESBIO, AIRBUS, ARVALIS Institut du Végétal, E2L, Occitanie Chamber of Agriculture, ASP, Occitanum, CNES

EducSCO

Objectives

To disseminate knowledge about the mechanisms, causes and consequences of climate change in society, via the educational system, in order to raise awareness of the issues at stake.

Territory of Experimentation

Academy of Toulouse

Duration of Experimentation

36 months

Expected Results

- Customized training for secondary school teachers;
- Interventions within the framework of the Precious Earth training for school teachers;
- Educational material: EducSCO-temperature, an application dedicated to the study of the evolution of temperatures from space;
- Informed citizens who are aware of the challenges of climate change!

Partners

CNES, Maisons pour la science, Académie de Toulouse, Esero, Esa

Themes

- Education
- The sustainable development goals
- Assets
- Environment

Conclusion

Simple and intuitive, the EducSCO web tool allows to visualize the temporal evolution of the surface temperature on several time scales. ©SCO
BOSCO Brittany

OBJECTIVE
To co-construct a service for estimating the water content of the territory at very high spatial and temporal resolution, including diagnostic tools and derived products to support public policies.

EXPECTED RESULTS
- Interface for visualizing regularly updated data on water content and derived products (water content on root thickness, recharge estimation);
- Realization of dashboards specific to the user territories.

PARTNERS
Geosciences Rennes, UMR Tetis, CNRS, INRAE, UMR SAS, UMR LETG, IUEM, KERMAP, TerraScience, GéoBretagne, OEB, BRETEL, DREAL Bretagne, Chambre d’agriculture Bretagne, Météo-France, Eau du bassin Rennais, Rennes Métropole, Ecobio Rennes, CNES

SATELLITES Sentinel-1 & 2

TERRITORY OF EXPERIMENTATION
Brittany region (France)

DURATION OF EXPERIMENTATION
24 months

ECLAT

OBJECTIVE
ECLAT (Evolution Climatique dans la région du Lac Tchad) combines environmental and anthropic data to bring concrete solutions in areas at risk of endemic violence.

EXPECTED RESULTS
- Land use indicators from which socio-economic indicators will be extracted;
- Monitoring the water resources of Lake Chad;
- Monitoring of wetlands.

SATELLITES Sentinel-1-2-3, Landsat, Jason, Pleiades, WorldView

TERRITORIES OF EXPERIMENTATION
Lake Chad area, Tocc Tocc Community Nature Reserve (Senegal), W National Park (Niger)

DURATION OF EXPERIMENTATION
12 months

PARTNERS
CNES, SIRS, Centre de Suivi Écologique (CSE) de Dakar, World Customs Organization, African Union, UNDP

Lake Chad, seen here by Sentinel-2 in 2018, has shrunk by about 90% since the 1960s © contains modified Copernicus Sentinel data, processed by ESA
EO4Drought Monitoring

OBJECTIVE
To provide a tool for farm management and institutional decision making by assessing the intensity of drought events and the plausible trajectory of a hydrological season.

SATELLITES
Sentinel-1 & 2, Landsat-7/8, MODIS, ECOSTRESS, SMAP, ASCAT, SMOS

DURATION OF EXPERIMENTATION
12 months

EXPECTED RESULTS
Web platform for the dissemination of drought maps and trends by area of interest.

TERRITORIES OF EXPERIMENTATION
New Caledonia, South Pacific Region, Reunion Island

PARTNERS
Météo-France, Agence Rurale, IRD, UMR Espace Dev, Theia, CNES, iNSiGHT

IRRISAT-Morocco

OBJECTIVE
To set up a system to help optimize irrigation water.

TERRITORIES OF EXPERIMENTATION
Morocco: Tadla irrigated area, Berrechid plain, Sebou hydraulic basin

PARTNERS
Royal Center for Spatial Remote Sensing, CESBIO, Office Régional de Mise en Valeur Agricole du Tadla, ORMVAG, Mohammed V University, Hassan 2 Agronomic and Veterinary Institute

EXPECTED RESULTS
• Operational system for the production of annual crop maps;
• Production of daily indicators: evapotranspiration, biomass production, soil moisture, irrigation needs;
• Platform for the dissemination of information and advice products to farmers and water stakeholders.

DURATION OF EXPERIMENTATION
24 months

SATELLITES
VIIRS, Landsat, Sentinel-2, Mohammed VI-A & B

Example of a daily evapotranspiration map. © IRRISAT
OpHySE

OBJECTIVE
OpHySE (Operational Hydrology from Space and modEls) is developing a platform for real-time monitoring of river conditions and navigability in a context of climate change.

SATELLITES
Jason-3, Sentinel-3 & 6, constellation GPM (Global Precipitation Measurement)

TERRITORY OF EXPERIMENTATION
French Guiana, South America

EXPECTED RESULTS
- Real-time monitoring of the state of the basins (flow and navigability);
- Climate trend analyses through re-analyses fed by long time series of altimeter and rainfall data.

DURATION OF EXPERIMENTATION
18 months

PARTNERS
HydroMatters, International Water Office, DGTM Guyana, Water Office of Guyana, CNES

SAMTool-Alert

OBJECTIVE
To develop a monitoring and diagnostic tool for effective management of Sargassum seaweed arrivals on the coast.

SATELLITES
Sentinel-2 & 3, Landsat-8, MODIS

TERRITORY OF EXPERIMENTATION
Martinique, municipalities Le Robert and Le François

EXPECTED RESULTS
Diagnostic and decision support tool producing risk indicators related to the sargassum stranding and to the specificities of each territory.

DURATION OF EXPERIMENTATION
24 months

PARTNERS
CLS, NOVA BLUE ENVIRONMENT, CNRS-LC2S, University of Portsmouth
Stock Water

OBJECTIVE
Open to countries willing to participate, Stock-Water is a partnership initiative to provide a global solution for satellite monitoring of water storage volumes.

EXPECTED RESULTS
- Monitoring of dam load: weekly production of volume rate indicators for each partner country;
- Specific processing system for public authorities.

DURATION OF EXPERIMENTATION
12 months

PARTNERS
IRD, INGREF Tunisia, INAT, NTPC Laos, MONRE Laos, National Geophysical Research institute India, MONRE/Laos, CESBIO, GET, LISAH, CNES

SATELLITES
Sentinel-1 & 2, TandemX

TERRITORIES OF EXPERIMENTATION
India, Tunisia, Laos, Burkina Faso

ADOPT

OBJECTIVE
To provide natural parks with indicators on the impacts of climate change on their territories and to support them in analyzing these results and developing adaptation scenarios.

EXPECTED RESULTS
- Definition and realization of products allowing to document the evolution of environments, pressures and their impacts on biodiversity: maps of land use, vegetation, night lighting, irrigation needs...
- Open source WebGIS interface.

DURATION OF EXPERIMENTATION
24 months

PARTNERS
Space & Living Labs, Regional Natural Parks of Occitania, IDGEO, La Telescop, CNES

SATELLITES
data and products distributed by Theia, Dinamis, Copernicus Climate Change Service (C3S), USGS and NASA

TERRITORIES OF EXPERIMENTATION
Regional natural parks of Occitania

THEMES
- **THE SUSTAINABLE DEVELOPMENT GOALS**
 - 6: Clean water and sanitation
 - 9: Industry, innovation and infrastructure
 - 12: Responsible consumption and production

Example of a soil map generated on the Theia platform. © Theia
Chove-Chuva

OBJECTIVE
To develop a demonstrator for monitoring the territorial dynamics observed in Mato Grosso, in relation to the adaptation and mitigation strategies implemented.

SATELLITES
Sentinel-2, Landsat, MODIS

TERRITORY OF EXPERIMENTATION
Mato Grosso (Brazil)

PARTNERS
UMR LETG, UMR Tetis, UNEMAT, UERJ, SEMA-MT, FEC, Embrapa, Alkante, CAT, ICV, GEODEV, CIRAD, CNRS, Université Rennes 2, CNES

EXPECTED RESULTS
• Dissemination of synthetic indicators on the evolution of climatic variables (precipitation) and the dynamics of occupation (forests, agriculture, water resources) and use (agricultural practices);
• Citizen data collection on climate change perception and location of land use types advocated in the ABC plan for low carbon agriculture.

DURATION OF EXPERIMENTATION
24 months

Eagle Hedges

OBJECTIVE
To develop tools for monitoring and characterizing the bocage network in order to support the implementation of national agro-ecological transition policies.

SATELLITES
Pleiades, Spot 6/7

TERRITORIES OF EXPERIMENTATION
France: Pyrenees-Gascony workshop area, Aude and Haute-Garonne departments

PARTNERS
TerraNis, DYNAFOR, IGN, OFB, AFAC, CNES

EXPECTED RESULTS
• Operational service allowing to extract the surfaces and linear of hedges of a territory;
• Development of the HedgeTools software for the calculation of indicators;
• 2D/3D indicators to evaluate the multifunctionality of hedges.

DURATION OF EXPERIMENTATION
24 months

Hedge extraction layer (©UMR Dynafor) from satellite images (© DigitalGlobe).
TropiSCO

OBJECTIVE
Thanks to radar images, carry out a global monitoring of tropical deforestation every 6 to 12 days against a map per year currently.

SATELLITES
Sentinel-1

TERRITORIES OF EXPERIMENTATION
Africa, Amazonia, Southeast Asia

DURATION OF EXPERIMENTATION
18 months

EXPECTED RESULTS
- Global map of tropical deforestation at 10 m resolution every 6 to 12 days;
- Web platform allowing to visualize and download the data for free;
- Possible uses: fight against illegal logging and mining, against illicit agricultural crops and wildlife trafficking...

PARTNERS
CESBIO, GlobEO, CNES

Arbocarto-V2

OBJECTIVE
Targeting places with a high risk of abundance of mosquitoes, vectors of human arboviroses, the Arbocarto-V2 models will allow health actors to orient and target vector control actions.

SATELLITES
SPOT 6/7, Sentinel-2

TERRITORIES OF EXPERIMENTATION
Montpellier and its region (France), Martinique, La Réunion

DURATION OF EXPERIMENTATION
12 months

EXPECTED RESULTS
- Web platform delivering maps of mosquito densities at their different stages (eggs, nymphs, larvae, adult females).
- The files are, according to the user’s choice, in shapefile format (for integration in GIS systems) or in kml format (for viewing with GoogleEarth).

PARTNERS
CNES, CIRAD, Ministry of Solidarity and Health

Monitoring of rubber tree cuttings by radar imagery north of Ho Chi Minh (Vietnam). © OGLobEO 2020
ClimHealth

OBJECTIVE
Predict environments and times favorable to the emergence of infectious diseases by exploiting satellite climate and environmental data.

SATELLITES
Sentinel-1 & 2

TERRITORY OF EXPERIMENTATION
Yangon, Myanmar

DURATION OF EXPERIMENTATION
24 months

PARTNERS
IRD, CNES, Pasteur Institute of Cambodia, University of Reunion, Seas-OI (Indian Ocean)

THEMES
The Sustainable Development Goals

EXPECTED RESULTS
- The demonstrator developed on leptospirosis is online.
- Ultimately, ClimHealth will be an operational module of meteorological and environmental data integrated into the DHIS2 global epidemiological monitoring tool.

STEMMING THE SPREAD OF CHOLERA

PODCAST-Demo

OBJECTIVE
To develop, from satellite observations and epidemiological data, a tool for visualizing and analyzing the risks of cholera, a waterborne disease favored by global warming.

SATELLITES
Essential climate variables of the ESA-CCI Initiative

PARTNERS
Plymouth Marine Laboratory, ESA, Japan Agency for Marine-Earth Science and Technology, National Center for Earth Observation

TERRITORY OF EXPERIMENTATION
India

DURATION OF EXPERIMENTATION
12 months

EXPECTED RESULTS
- Habitat suitability maps of *Vibrio cholerae*, the pathogen of cholera;
- Maps of ESA-CCI indicators: sea surface temperature, salinity, ocean color, sea level anomalies;
- Time series of climate indices for El Niño and the Indian Ocean dipole;
- Maps of reported cholera outbreaks.

THEMES
The Sustainable Development Goals

Visualization of the NDVI in Yangon from a Sentinel-2 image © IRD/Contains modified Copernicus Data

Vibrio cholerae, hosted by planktonic and detrital hosts, survives transport by ocean currents. © Getty Images
BanD-SOS

OBJECTIVE
To establish a pre-operational flood forecasting service, including cyclonic flooding, in the deltas, and the associated societal risk.

EXPECTED RESULTS
- Prediction of the flooding hazard, combined with spatialized information on the vulnerability of exposed populations;
- Real-time provision of information necessary to implement evacuation and protection operations for populations when a hurricane event occurs.

SATELLITES
Sentinel-2

TERRITORIES OF EXPERIMENTATION
Bengal (Bangladesh, India) and Amazon (Brazil) deltas

DURATION OF EXPERIMENTATION
24 months

THEMES

FLAude

OBJECTIVE
Developed in a particularly affected territory, FLAude has delivered its platform FORO, Flood Observatory for Resilient Occitania. Operational, the tool is already in the hands of the territory’s actors in order to improve their resilience to the risks of flooding from extreme hydrometeorological events.

EXPECTED RESULTS
- Interactive web platform allowing to simulate damage maps such as the detection of ice jams or the remote sensing of crops which, by accumulating the vegetation carried by the river, participate in retaining water.

SATELLITES
Pleiades, Sentinel-1 & 2, SPOT, Landsat

TERRITORIES OF EXPERIMENTATION
Department of Aude and Occitania Region

DURATION OF EXPERIMENTATION
24 months

Coastal defenses installed along the Kuakata coastline (South Bangladesh) ©Jamal Uddin Khan (LIENSs, La Rochelle).

Thanks to FORO, the location of the hedges with respect to the hydrological network and the slope of the land allows to identify the zones at stake. © FLAude
FloodDAM

OBJECTIVE
Monitor the level of hydrological zones to predict floods and alert nearby populations, using optical, radar and altimetric satellite data.

SATellites
Pleiades, Sentinel-1-2-3, Pleiades, TerraSarX

TERRITORIES OF EXPERIMENTATION
Garonne, Seine (France), Mississippi (USA), Ebro (Spain), Betsiboka (Madagascar)

EXPECTED RESULTS
- Flood Alert Service;
- Automatic flood mapping system;
- Flood Hazard Indicator Maps;
- Making machine-learning models available as free software.

DURATION OF EXPERIMENTATION
15 months

PARTNERS
CNES, CERFACS, Predict, Vortex.IO, AIRBUS Defense & Space, JPL, VIGICRUES

Gade Lapli

OBJECTIVE
To develop warning tools and services for managing hydrometeorological crises. For this, the project uses various satellite data as well as those of the COSPARIN project (COntribution du SPatial à l’Analyse du Risque INondation).

SATellites
GOES, MSG, METEOSAT, FY, HIMAWARI, MetOp, TerraSAR-X, TanDEM-X

TERRITORY OF EXPERIMENTATION
Haiti (Caribbean)

EXPECTED RESULTS
- Real-time support to civil security authorities to anticipate damaging events: real-time rainfall estimates for Haiti and associated alert service;
- Creation of indicators for monitoring and measuring climate change from the perspective of extreme hydrometeorological events.

DURATION OF EXPERIMENTATION
18 months

PARTNERS
Météo-France, Government of the Republic of Haiti, CEREMA, Predict, CNIGS, DGPC, SIE HAITI, CNES
Littoscope

OBJECTIVE
Identify the vulnerability of the coastline to flooding hazards and assess the associated risks by combining socio-economic and spatial data.

SATellites
Pleiades, Copernicus Marine and Climate Change Services

TERRITORIES OF EXPERIMENTATION
France : Palavas-les-Flots and Metropole of Montpellier, Gâvres

EXPECTED RESULTS
Interactive web platform delivering:
- Permanent and temporary flood maps;
- Maps of the risks associated with these hazards.

DURATION OF EXPERIMENTATION
12 months

PARTNERS
CLS, SIRS, GCF, LEGOS, CNES, BRGM

MAP
Mapping of submerged areas around Palavas-les-Flots. © CNES-CLS2016 study

Monitoring the Gold Coast

OBJECTIVE
To develop an automated methodology for waterline extraction from radar imagery and tidal status data to study net erosion or accretion, depending on whether the waterline moves shoreward or offshore.

SATellites
Sentinel-1, ESA Sea State CCI data (L3 & L4 products)

TERRITORY OF EXPERIMENTATION
Gold Coast (Australia)

EXPECTED RESULTS
- Online demonstrator with sample mapping and waterline analysis to study beach recovery patterns after a storm;
- Proof-of-concept of automatic waterline detection, applicable to any coastal environment in the world with minimal installation costs.

DURATION OF EXPERIMENTATION
10 months

PARTNERS
Telespazio UK, CMRC of Griffith University, ESA, Future Earth

MAP
The coastline of the Australian Gold Coast. © Pixabay
OSS Saint Louis

OBJECTIVE
Combine spatial mapping, in-situ data and citizen surveys to characterize the vulnerability of coastal areas to climate change risks.

SATELLITES
Sentinel-1-2-3, SPOT 6/7, Pleiades

TERRITORY OF EXPERIMENTATION
Coastline of Saint Louis du Senegal

DURATION OF EXPERIMENTATION
24 months

EXPECTED RESULTS
- Identification of past major floods generating damage;
- Quantifying sea level rise as it approaches the coast;
- Cartographic simulation of flooding scenarios;
- Geo-spatialized database of risk areas and elements;
- Tools to raise awareness among local actors and the population.

PARTNERS
CNES, UNDP, CNRS, University of Rouen, LEGOS, M2C, Idees, Resallience

Viet-ARRO

OBJECTIVE
Conducted within the framework of the Vimesco-Rice project (see p32) devoted to the adaptation of rice cultivation in Vietnam, Viet-ARRO focuses on the impacts on agriculture of typhoons, which are increasingly active in the center of the country.

SATERRITES
Sentinel-1

TERRITORIES OF EXPERIMENTATION
Central Vietnam and areas affected by typhoons during the project

EXPECTED RESULTS
- Internet portal for the visualization of processed and generated data:
 - Reference cards;
 - Damage and land use evolution maps;
 - Statistical information showing the evolution of agriculture in the impacted areas.

DURATION OF EXPERIMENTATION
18 months

PARTNERS
CNES, Vietnam Space Agency VAST, IRD, USTH, TSE, GlobEO, CESBIO

Pleiades view of Saint Louis, at the mouth of the Senegal River. © CNES 2012, Distribution Airbus DS

Map of areas flooded by Typhoon Damrey on November 4, 2017 produced by the International Charter for Space and Major Disasters with Sentinel-1 data © Contains modified Copernicus Sentinel data (2017), map produced by UNITAR/UNOSAT
November 2021

Direction of publication
Laurence Monnoyer Smith and Frédéric Bretar

Editing & iconography
Karol Barthelemy

Design & production
Kenza Regy

Printed by
Imprimerie DELORT
ISO 26000, recycled paper and vegetable inks

This document is published by the
Centre National d’Études Spatiales (CNES)

Have you subscribed to Spirit of SCO?

With our monthly newsletter, keep an eye on the projects and highlights not to be missed, such as the opening of the calls for projects!