living planet symposium BBDD

LittoSCOpe

A satellite solution to support coastal resilience

Marc Lucas¹, Claire Dufau¹, Olivia Fauny¹, Solange Lemai-Chenevier², Fabrice Dazin¹, Franco Fontanot¹, Deborah Idier³, Rodrigo Pedreros³, Konrad Rolland¹, Philippe Schaeffer¹, Jochen Hinkel⁴, Frederic Bretar²

¹CLS, ²CNES, ³BRGM, ⁴GCF

Satellite observations over **OCEAN** and **land** to support decision making

Satellite Altimetry

Satellite VHR Optical Imagery

SATELLITES OBSERVATIONS

Combining **altimetry** and **VHR optical imagery** to identify impacted areas and to propose **a replicable tool** for guiding **adaptation** of **every coastal areas** facing the effects of climate change

FOR AND WITH COASTAL TERRITORIES

Through **interviews** and **feedbacks**, the risk indicators and the web platform have been built in **collaboration with coastal territories** to best meet their needs and develop a relevant tool

Digital Elevation Model from VHR optical satellite imagery

Digital Elevation Model from VHR optical satellite imagery

Plélades@CNIES 2019 IGN 2019 Distribution AIRBUS DS, tous droits réservés - Usage comm

Spatial resolution : 0.5m Vertical resolution : 0.6m

Digital Surface Model (DSM)

Digital Elevation Model (DEM)

Digital Terrain Model (DTM)

815901184082 0.702716537475585 1.44634172058105

Comparison with LIDAR DTM : 0.05 m bias , 0.6 m std

#LPS22

Coastal hazards HR modeling with satellite DEM

- HR hydrodynamic Meta-modeling chain
- Reproducing a major coastal flood event in 2015 (Storm Johanna)
- $\hfill\square$ DEM from LIDAR measurements \rightarrow replaced by the satellite-derived DEM
- Flooding over-estimation with satellite DEM
- > Satellite DEM accuracy to be improved (processing, new missions) when HR modeling is needed

#LPS22

Coastal flood hazard first-level assesment

- Satellite DEM
- Water level at the coast
- Static flooding method 24 scenarios on both territories

Trends of sea level rise

-Satellite Observation

-IPCC scenario from SROCC (RCP 2.6 et 8.5)

Dates

Addition of extreme events

Decadal storm (with/without)

4 dates, 3 SLR trends; with or without decadal storm/tide combination

Mapping socio-economics assets from satellite VHR optical imagery

Mapping socioeconomics assets from satellite VHR optical imagery

Low season

Population distribution (building level)

From exposure to risk

EXPOSURE

• Risk calculation: CVI (Coastal Vulnerability Index) developed par Gornitz & al. (1992)

X

HAZARD

ENVIRONMENTAL SCIENCES DIVISION

A COASTAL HAZARDS DATA BASE FOR THE U.S. EAST COAST

Contributed by

Vivien M. Gornitz National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Includes **physical and morphological parameters as well as** et **socio-economical data from the coastal** zone Calculation of « Risk index » on a 1 to 5 scale

RISK

#LPS22

Synthetic Index to evaluate coastal risks

Combining coastal flooding hazard intensity with 5 types of exposure (normalised as an index on a 1 to 5 scale)

Human

- Number of people
- Vulnerable population rate (<10 years old and > 65 years old)

Socio-economic

→ Gâvres : HR (Urban atlas)

companies/businesses

→ Gâvres : HR (Google search)
 → Palavas : MR (municipality

level)

Number of touristic

accomodation units

Land cover

Number of

 \rightarrow Palavas : MR

Number of jobs

Environmental

 Presence of 1+ natural protection areas

(RAMSAR, ZNIEFF I & II, Natura 2000, ZICO, APB...)

 Presence of cultural sites classified or registered

> 4 3 2

5

Test on a specific scenario: MA100 Decadal storm Trend from IPCC RCP8.5 Year 2100

8.0

0.4

0

 Image: Contract of the second seco

Improved knowledge for better decison making

Inform decision-makers

Make information available through an **interactive web interface** to help managers familiarize themselves with the risks totheir coastal area.

Provide an **enlightening** and **easy-to-use** decision guiding tool.

Co design of the platform with end users

Hazards
Identification

Risk Evaluation

Users feedback

✓ Interested in the maps to increase their knowledge about risks

-

PUBLIERIE FRANCA

irection Départementale les Tarritoires et de la Mer Montpellier méditerran métropole

ORIEN

- \checkmark a tool for local dialogue within elected /managers
- ✓ Design and ergonomy +++
- ✓ Authentified access to control the dissemination of this sensitive information about risks

Future Evolutions:

- Make the educational content more accessible and complete
 - Tooltips and buttons
 - Highlighting of data units and colorbar
- Communicate more on limits and application scales of the results

CARNON

SYBLE

GÂVRES

#LPS22

living planet symposium BBNN

Thank you

www.cls.fr