
 

Forests encompass approximately 30% of the Earth's land surface and are integral to the 

global carbon cycle. They store around 45% of terrestrial carbon (Bonan, 2008), predominantly 

in the form of Aboveground Biomass (AGB) through the process of photosynthesis. AGB 

comprises all live vegetation components above the ground, including stems, branches, bark, 

seeds, flowers, and foliage, with approximately 50% of its dry mass constituted by carbon. The 

measurement of AGB is typically expressed in metric tons per hectare, either as dry matter (t ha−1 

or Mg ha−1) or as carbon content (t C ha−1 or Mg C ha−1) (Rodriguez-Veiga et al., 2017). 

Intergovernmental organizations and international agreements, such as the United Nations 

Framework Convention on Climate Change (UNFCCC) established in 1992 and its subsequent 

extension through the Kyoto Protocol in 1997, have acknowledged the critical importance of 

monitoring and reducing greenhouse gas (GHG) emissions resulting from anthropogenic 

activities. At the 21st Conference of the Parties (COP21) held in 2015, a landmark comprehensive 

climate agreement—the Paris Agreement—was adopted, with signatory parties aiming to limit 

global temperature rise to below 2°C above pre-industrial levels and to pursue efforts to constrain 

further increase to 1.5°C. Carbon dioxide (CO₂) remains one of the most significant trace gases 

influencing global biogeochemical cycles, such as the carbon cycle. The increase in atmospheric 

CO₂ contributes to global warming and can induce changes in weather patterns (IPCC, 2014). In 

many tropical countries, deforestation constitutes the primary terrestrial source of CO₂ emissions 

and ranks as the second-largest anthropogenic source after fossil fuel combustion (Gibbs et al., 

2007). 

At large spatial scales, the availability of data constitutes the primary limiting factor in 

aboveground biomass (AGB) mapping approaches. Furthermore, estimating AGB across diverse 

ecosystems, such as tropical and boreal forests, presents significant challenges when applying a 

uniform methodology. This difficulty arises from variations in forest structure, species 

composition, wood density, allometric relationships, atmospheric effects, and vegetation moisture 

content (Rodriguez-Veiga et al., 2017). 

 

AGB Mapping using Machine Learning Model 
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1. Specific Data  

The preprocessing of remote sensing data from various sources, which are available and 

sensitive to forest inventory plots, was conducted to ensure data quality and consistency. The 

datasets were prepared through mosaicking, georeferencing, and resampling pixels to a spatial 

resolution of 30 meters. Additionally, the projection was standardized to the geographic coordinate 

system (WGS 1984). In this study, all variables derived from different sources are summarized in 

Table 1. 

 

Table 1. the variables used for quantifying the AGB by using machine learning approaches   

Remote sensing 

dataset 

Descriptions Reference 

SAR-L band 

backscatter intensity 

The intensity of HV backscatter is strongly related to 

AGB, whereas L band SAR is associated with biomass 

increasing until the saturation point (approximately 150-

200 t∙ha-1) 

Baker et al., 1992; 

Saatchi et al., 2007;  

Lucus et al., 2010 

SAR-C band 

backscatter intensity 

The backscatter of C-band in the dry season image has 

the potential to discriminate within the very low biomass. 
Luckman et al., 1997 

SAR-C band 

Coherence 

C-band coherence (with a short repeat pass interval) has 

the potential to retrieve stem volume. 

Gaveau et al., 2001; 

Wagner et al., 2003; 

Santoro et al., 2018 

Biophysical 

parameter 

LAI, fapar, fcover 

The biophysical parameter interacted with the canopy 

structure. 

Saatchi et al., 2011; 

Pizaña et al.,2016 

SRTM 

(Elevation, Slope, 

Aspect) 

The elevation, slope, and aspect are related to the forest 

types, species composition, and moisture. 

Saatchi et al., 2011; 

Baccini et al.,2012;  

Hu et al., 2016 

%Tree cover 

LANDSAT VCF 
The dense forest tends to have a high intensity of AGB. 

Santoro et al., 2011; 

Rodriguez-Veiga et 

al.,2016;  

Minh et al., 2018 

Land surface 

temperature 
It relates to the elevation and forest types. Baccini et al.,2012 
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Remote sensing 

dataset 

Descriptions Reference 

NDVI 
NDVI is a good indicator of green biomass in the 

deciduous and dry forest. 

Foody et al.,2003;  

Freitas et al., 2005 ; Hu 

et al., 2016 ; Su et 

al.,2016 

Wildfire 

(Fire frequency map) 

-Wildfire has supported the seed germination of Molinia 

spp. in European heathland. 

-Some trees are not the fire-tolerance species, such as 

Pinus spp. in Thailand. 

-Wildfire could change the forest type from evergreen to 

deciduous forest type, and it can control the species 

composition. Furthermore, the frequently burned site has 

higher gross nutrient losses. 

Brys et al., 2005;   

Wanthongchai et al., 

2008 

Forest types 
-Forest species composition and its relation to wood 

density. 
Chave et al., 2009 

Forest inventory 

plots 
-Forest plots surveyed between 2010-2016 

Department National 

Parks, Wildlife and 

Plant Conservation 

(DNP); Thailand 

2. Data analysis 

 

The environmental variable maps, generated following the pre-processing procedures, were 

utilized as predictor variables. Initially, all datasets served as predictors in constructing the 

preliminary Aboveground Biomass (AGB) model using machine learning techniques, specifically 

MaxEnt and Random Forest (RF) models. Subsequently, the percentage contribution values were 

assigned to determine the most suitable datasets for use as predictors in the final model. The key 

steps of this study are illustrated in Figure 2 and are described in detail within each main section. 
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Figure 1. The flowchart of the methodology to analyse AGB mapping in this study. 
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3. BIOMASS OF THE TERRESTRAIL ECOSYSTEM 

As previously discussed, ongoing concerns revolve around the extent to which global 

warming influences the release of CO2 into the atmosphere. Consequently, scientists are 

increasingly interested in quantifying the biomass of forested regions to better understand, 

relative to a specific area, (1) the amount of biomass stored and (2) the total carbon sequestered 

within global forests (West, 2009). This study therefore emphasizes the biomass of woody plants, 

with 'biomass' defined as:  

The renewable organic matter over time, known as woody biomass, encompasses the 

accumulated mass of roots, wood, bark, and leaves from both living and dead woody shrubs 

and trees. It is primarily composed of carbohydrates and lignin produced through the 

photosynthetic process (Hubbard, 2007).  

Understanding terrestrial biomass is crucial in addressing and managing global warming. 

Accurate knowledge of biomass distribution across different regions is essential for enhancing 

our comprehension of the global carbon cycle, as biomass acts both as a source and sink of 

carbon, facilitating exchange with other carbon pools. Specifically, this information enables the 

calculation of carbon emissions resulting from deforestation and allows for the assessment of 

spatial changes in biomass over time. This is particularly relevant in tropical forests, where 

inventories have been conducted; however, many regions remain underrepresented due to 

incomplete, outdated, or missing data (Houghton, 2005). Despite these efforts, quantifying 

biomass continues to be challenging due to uncertainties related to deforestation rates and 

biomass density in tropical areas (Houghton, 2009).  

The uncertainty surrounding the evaluation of biomass data is further worsened because 

direct investigation of biomass C stocks from remotely sensed data is often either impossible due 

to a lack of data or cannot be performed for other reasons (Barbosa 2014). A possible explanation 

is that current remote sensing technology cannot directly measure the girth of a tree or identify 

the carbon stored in parts of a tree such as the trunk, branches, and roots. Additionally, field 

measurements are necessary to develop estimation models. This uncertainty is an inevitable result 

of any data related to various areas and the study of the carbon stock model. Analyzing sources 

of uncertainty could lead to improvements in the overall accuracy and precision of the developing 



P a g e  | 6 

 

 
Forest biomass model 22-26 September 2025 

Geo-Informatics and Space Technology Development Agency (Public organization) 

 

model, enabling these tools to be better employed and prioritized in future studies (GOFC -

GOLD, 2016). Future research may modify these models, for example, by adding more suitable 

variables to improve biomass estimation. The causes of errors encountered are summarized in 

Table 3. The aboveground biomass map should also indicate uncertainty (Saatchi, 2011; 

Rodrigues-Veiga, 2016) because uncertainty reflects the lack of knowledge of the true value, 

which can be represented by the range and likelihood of possible values (Eggleston, 2006). 

 

An analysis of the source of uncertainty could lead to improvements in the overall 

accuracy and precision of the developing model, and thereby allow such tools to be better 

employed and prioritised in future studies (GOFC-GOLD, 2016) because the later researcher 

could modify or add more suitable variables to improve the accuracy of the biomass model. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Sources of uncertainty in quantifying biomass maps (Foody et al., 2003;  

Rocchini et al., 2013; Gonzalez., 2014 and Avitabile et al., 2016). 

 

Type of Uncertainty Sources of Errors 

Remote Sensing Data 
-Radiometric Error (Atmospheric Effect) 

-Geometric Error (Location and Boundary) 
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Type of Uncertainty Sources of Errors 

-The Cartographic and Thematic Standard (The Minimum 

Mapping Unit (MMU) and The Definition of Land Category) 

-Attribute Error (Human Error, Misclassification due to the 

Spectral Mixture and Training Stage) 

Field Measurement 

-Error of the Tree Allometric Equation, Wood Density, and 

Carbon Fraction Value 

-Sampling Design, Plot Size, Geolocation (Depending on the 

Spatial Correlation and Budget), and Topography 

-Tree Measurement 

Spatial Mismatch of Dataset 

-Error in the Different Scales Between the Pixel Size of the Image 

and the Plot Size on the Ground. 

-Data Compatibility (the Combination of Data of Different 

Qualities and Sources) 

Temporal Mismatch of 

Dataset 

-The Seasonal Differences between Ground-Based and Space-

Based Data. 

Equation/Model -Errors Caused by Model Residuals, Parameters, and Predictors. 

 

 

 

 

Table 2. Advantages and disadvantages of each remote sensing approach to quantify the AGB in 

forested areas (Gibbs et al., 2007; Barbosa et al., 2014; Sinha et al., 2015) 

 

Method Advantages Disadvantages Uncertainty 

Optical 
• Some data is free of charge • Limitation in relation to weather 

conditions 
High 
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Method Advantages Disadvantages Uncertainty 

• Suitable for simple or 

homogeneous forest 

• Cannot penetrate through the 

canopy of forested area 

• Saturation in low biomass 

SAR 

• InSAR and Pol-InSAR 

techniques are suitable for 

heterogeneous forest 

• All-weather/day-and-night 

capability 

• Penetrates through 

vegetation, soil, sand and 

dry snow 

• Sensitivity to polarisation 

and wavelength 

• Sensitivity to surface 

roughness, dielectric 

properties and moisture 

• Uncertainty at different stages 

• Complex process and deification 

• Saturated depending on 

wavelength  

• Expensive 

Medium 

LiDAR 

• Overcomes the saturated 

value 

• Higher accuracy in 

predicting biomass and low 

RMSE 

• High cost per area 

• Restricted by the cloud 

• Unavailability of a large-area 

dataset 

• Lack of historical data for 

temporal analysis 

Low to 

medium 

 

 

The primary function of Synthetic Aperture Radar (SAR) sensors is to penetrate forest 

canopies and interact with various tree components, with the interaction dependent on the sensor's 

wavelength. High-frequency sensors are generally limited to capturing information from the 

upper canopy layers, whereas low-frequency sensors possess the ability to penetrate deeper into 

the canopy and even reach the ground. This is because longer wavelengths tend to penetrate 

vegetation more effectively than shorter wavelengths (Blazter, 2001). Consequently, SAR 

imagery provides valuable insights into canopy volume, enabling the estimation of parameters 
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such as biomass magnitude, annual biomass increment, and the vertical distribution of biomass 

(Le Toan, 2002). However, a notable limitation is the saturation of SAR backscatter intensity at 

low biomass levels, which hampers accurate biomass estimation in such conditions (Koch, 2010). 

The saturation response varies across different forest ecosystems and is influenced by factors 

including wavelength, sensor polarization, energy attenuation within the canopy, canopy density, 

stem density, forest type, and soil conditions (Lu, 2006; Mitchard et al., 2009). These interactions 

collectively inform the development of predictive models for forest biomass estimation. 

 

Table 3. The saturation point of SAR backscatter is categorized by forest biome and wavelength 

Biome Wavelength Saturation level (t ha-1) Reference 

Temperate 

C (3.8–7.5 cm) Less sensitive – 20 Dobson et al. (1992), Imhoff (1995b) 

S (7.5–15 cm) < 100 Ningthoujam et al., 2016 

L (15–30 cm) 40–100 Dobson et al. (1992), Imhoff (1995b) 

P (30–100 cm) 100–200 Dobson et al.(1992), Imhoff (1995b) 

VHF 440–550 Le Toan et al. (2001) 

Boreal 

C (3.8–7.5 cm) 40 Fransson and Israelsson (1999) 

L (15–30 cm) 70–90 
Fransson and Israelsson (1999), Peregon 

and Yamagata (2013) 

VHF 625 Fransson et al. (2000) 

LiDAR No limit Naesset, 2007 

Tropical 

C (3.8–7.5 cm) 20–50 Imhoff (1995a), Luckman et al., 1997 

L (15–30 cm) 40–150 
Imhoff (1995a), Luckman et al., 1997, 

Lucus et al., 2010, Mitchard et al., 2009, 

Carreiraas et al., 2012 
P (30–100 cm) 300 Imhoff (1995a) 
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3. Active sensors and future missions 

For over three decades, active sensors have been utilized in space missions, providing 

valuable data across diverse scientific and practical applications. Over this period, numerous 

missions have successfully contributed to various fields, demonstrating the significant advantages 

of Synthetic Aperture Radar (SAR) sensors. Notably, short-wavelength X-band sensors, 

approximately 3 centimeters in wavelength—such as those on TerraSAR-X and the COSMO-

SkyMed constellation, which includes four polar-orbiting satellit,es namely CSG-1, Paz, and 

KOMSAT-5—continue to operate effectively. These satellites persist in delivering data in response 

to evolving user demands, underscoring their continued relevance and utility in space-based 

remote sensing.emand. 

The C-band Synthetic Aperture Radar (SAR) satellite missions, operating at approximately 

5 cm wavelength, have been implemented to provide valuable data to users. Notable programs 

include the RADARSAT constellation and SENTINEL-1A/B. Under European Space Agency 

(ESA) supervision, a new series of C-band missions is planned, with SENTINEL-1C scheduled 

for launch in 2022. Additionally, the S-band SAR mission, NovaSAR-S, successfully conducted 

its operations in 2018. 

The long-wavelength Synthetic Aperture Radar (SAR), specifically the L-band (~24 cm), 

is effective in detecting high levels of above-ground biomass (AGB). Earth observation data will 

continue to be collected using the ALOS-2 satellite along with two Argentinian satellites, 

SAOCOM-1 and SAOCOM-2. Furthermore, the European Space Agency (ESA) has planned the 

BIOMASS mission, scheduled for launch in 2022, which will employ P-band (435 MHz) 

wavelengths with multi-baseline interferometric and fully-polarimetric capabilities. This mission 

is expected to provide unprecedented sensitivity to AGB in forested areas by enabling the retrieval 

of biomass information from beneath the forest canopy. The BIOMASS mission aims for a spatial 

resolution of 200 meters, with a target relative Root Mean Square Error (RMSE) of less than 20% 

for AGB values exceeding 50 tonnes per hectare, and an RMSE of less than 10% for AGB below 

50 tonnes per hectare (Banda et al., 2020). 

For spaceborne LiDAR profiling sensors, three key missions—namely ICESat-1 (GLAS), 

ICESat-2 (ATLAS), and GEDI—have the potential to provide global tree height data essential for 

aboveground biomass (AGB) mapping. Additionally, LiDAR profiling can effectively extract 
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ground surface elevation and canopy cover when the LiDAR footprints are measured. The 

forthcoming LiDAR mission, the Multi-footprint Observation LiDAR and Imager (MOLI), 

operated by JAXA, is scheduled to launch in 2027. Consequently, integrating spaceborne LiDAR 

data can significantly enhance the accuracy of AGB models and reduce uncertainties in AGB 

estimations at a global scale. 

 

Table 4. The mission of active remote sensing has been operational since 1991, and present and 

planned missions are expected to continue operating in the near future. 

Satellite/ 

Sensors 

Country/ 

Organization 
Time span 

Band/ 

Wavelength 

(cm) 

Polarization 

Spatial 

resolution 

(m) 

Revisit 

(days) 

ERS-1 Europe/ESA 1991-2000 C-band/5.6 VV 26 3-176 

JERS-1 Japan/JAXA 1992-1998 L-band/23.5 HH 18 44 

ERS-2 Europe/ESA 1995-2001 C-band/5.6 VV 26 3-176 

RADARSAT-1 

 
Canada/CSA 1995-2013 C-band/5.6 HH 8-100 3-24 

ENVISAT/ASAR Europe/ESA 2002-2012 C-band/5.6 Single, Dual 30-1000 35 

ALOS-1/PALSAR Japan/JAXA 2006-2011 L-band/23.6 Single, Dual, Quad 10-100 46 

RADARSAT-2 Canada/CSA 2007-now C-band/5.6 Single, Dual, Quad 3-100 24 

TerraSAR-X Germany/DLR 2007-now X-band/3.1 
Single, Dual 

Interferometric 
1-18.5 11 

TanDEM-X Germany/DLR 2010-now X-band/3.1 Dual, Quad 12  

COSMO-Skymed 

-1,-2,-3,-4 
Italy/CSK 

2007-now 

2007-now 

2008-now 

2010-now 

X-band/3.1 Single, Dual 1-100 
16/1 

(4satellites) 

RISAT-1 India/ISRO 2012- C-band/5.6 Single, Dual, Quad 1-50 25 

KOMSAT-5 Korea/KARI 2013- X-band/3.2 Dual/Quad 1-20 28 

ALOS-2/PALSAR-2 Japan/JAXA 2014-now L-band/23.8 Single, Dual, Quad 1-100 14 

SENTINEL-1A 

SENTINEL-1B 

SENTINEL-1C 

Europe/ESA 

2014-now 

2016-now 

 

C-band/5.6 Single, Dual, Quad 9-15 
12/6 

(2satellites) 

SAOCOM-1A 

SAOCOM-1B 
Argentina/CONAE 

2018-now 

2020-now 
L-band/ Quad 7-100 

16/8 

(2satellites) 

PAZ Spain/CDTL Feb22,2018 X-band/3.1 Single, Dual 1-16 11 

NovaSAR-1 U.K./UKSA Sep17,2018 S-band/9.4 
Dual, Tri-pol 

(HH+VV+HV) 
6-45 14 

RADARSAT 

Constellation 

-1/2/3 

Canada/CSA Jun12,2019 C-band/5.6 Single, Dual, Quad 1-100 12 

CSG-1 Italy/CSG 2019-now X-band/ Single, Dual, Quad 0.8-40 16 

CSG-2 Italy/CSG Jan31,2022 X-band/ Single, Dual, Quad 0.8-40 16 

NISAR USA/NASA, ISRO Jul 30,2025 
L-band/24 

S-band/9 
Quad 3-10 12 
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Satellite/ 

Sensors 

Country/ 

Organization 
Time span 

Band/ 

Wavelength 

(cm) 

Polarization 

Spatial 

resolution 

(m) 

Revisit 

(days) 

MOLI Japan/JAXA Plan 2027 LiDAR/Imager Multi-footprint 25 - 

ALOS-4/PALSAR-3 Japan/JAXA Jul1,2024 L-band/23.8 Dual, Quad 3-10 14 

BIOMASS Europe/ESA Apr29,2025 P-band/69.0 Quad 50 25-45 

TanDEM-L Germany/DLR plan 2028 L-band/23.6 
Single, Dual 

Interferometric 
- 16 

TerraSAR-X2 Germany/DLR plan X-band/3.1 Full dual, Quad 0.25-50 - 

Single = single polarization, Dual = dual polarization, Quad = quad polarization 

 

4. ABOVEGROUND BIOMASS ESTIMATION APPROACHES  

There are multiple methodologies for extrapolating sampled plots to generate a 

comprehensive gridded map for biomass estimation. Given that it is unfeasible to measure every 

individual tree across entire forested regions, the integration of remote sensing data with forest 

sampling plots presents a viable and effective approach to mapping above-ground biomass 

(AGB). Currently, various methods have been developed for AGB prediction, which can be 

categorized into two primary types: 1) parametric algorithms and 2) non-parametric algorithms 

(Lu et al., 2016). Within the parametric category, approaches can be further subdivided into 

empirical regression models and semi-empirical or physical-based models (Santoro & Cartus, 

2018). 

 

4.1 Parametric algorithm 

The parametric model is based on the relationship between the dependent variable (i.e., 

the amount of biomass) and independent variables (i.e., remote sensing datasets and auxiliary 

datasets). 

 

Parametric empirical regression model 

Empirical regression techniques, including both simple linear and multiple regression 

models, have been widely employed in numerous studies (Ranson et al., 1997; Santos et al., 2003; 

Foody et al., 2003; Sun et al., 2011). The regression algorithm is straightforward and facilitates the 

computation of the slope coefficient and intercept using a set of training plots. However, the 
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assumption of a linear relationship between radar backscatter intensity and biomass values often 

leads to underestimation or overestimation of actual biomass (Santoro & Cartus, 2018). Moreover, 

the multiple regression approach presumes that the independent variables—primarily features 

derived from remote sensing datasets—are not correlated with the dependent variable (field-

measured above-ground biomass, AGB). This assumption may limit the model’s predictive 

accuracy and overall effectiveness (Liang & Wang, 2012). 

 

Parametric semi-empirical and physical-based model 

Regarding approaches that do not require training plots for AGB mapping estimates, 

the physics-based model can operate based on the relationship between SAR images and the 

magnitude of AGB or GSV (Quegan et al., 2017; Santoro & Cartus, 2018). The parameters used 

to build this model can determine the backscatter intensity (i.e., Water Cloud Model; WCM) 

(Peregon & Yamagata, 2013) and the coherence value (Interferometric Water Cloud Model; 

IWCM) (Santoro et al., 2005) of SAR observations. However, the semi-empirical model 

necessitates a dataset of forest GSV measurements to estimate coefficients across different forest 

ecosystems (Santoro et al., 2002). Additionally, the coefficient constants depend on factors such 

as the dielectric constant in the vegetation, forest structure, and seasonal conditions (Pulliainen et 

al., 1996; Santoro et al., 2002). This method has been successfully used to estimate the AGB in the 

northern biome, with applications in Siberia, Scandinavia, and Northeast China (Santoro et al., 

2006). Moreover, for global AGB mapping (Globbiomass), the physics-based model is a valuable 

approach for quantifying forest biomass since it does not necessarily rely on forest sample plots 

(Santoro et al., 2018b). Nevertheless, this approach has not been tested across all forest ecoregions 

(Quegan et al., 2017) for verifying experimental coefficient values. Additionally, a study by 

Peregon and Yamagata (2013) found that the WCM model tends to underestimate in dense forests 

with high biomass levels, due to SAR signal saturation.  

 

4.2 Non-parametric algorithm 

The relationship between forest biomass and variables derived from remote sensing 

datasets has not been consistently modeled using linear equations (Song, 2013). Often, the 

correlation between these entities is complex, rendering parametric approaches unsuitable for 

predicting above-ground biomass (AGB) distribution models (Lu et al., 2016). Consequently, 
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machine learning methods have gained increasing popularity for estimating AGB, as they leverage 

mathematical models trained on patterns identified in existing data (Hackeling, 2014; Ghatak, 

2017). These approaches effectively address issues arising from non-linear relationships between 

predictor variables and in-situ measurements. For example, Hayashi et al. (2019) demonstrated 

that machine learning models, such as Random Forest (RF), could overcome saturation effects 

observed at AGB levels up to 280 Mg ha^-1 when utilizing time-series datasets of ALOS-2 

backscatter intensity. Similarly, Englhart et al. (2012) found that artificial neural networks (ANN) 

are well-suited for multi-temporal analysis of synthetic aperture radar (SAR) data to generate 

accurate AGB maps and distinguish between low and high biomass regions. Nevertheless, 

implementing such models requires adequate training and testing datasets, which is often 

hampered by the scarcity of in-situ data in tropical forests for calibration and validation purposes 

(Cartus & Santoro, 2019; Quegan et al., 2017). Literature indicates that non-parametric, tree-based 

approaches—such as those employed by Baccini et al. (2008)—and Maximum Entropy (MaxEnt) 

models (Saatchi et al., 2008) have been successfully used to estimate biomass at regional scales in 

tropical forests. Santoro and Cartus (2018) also noted that the use of SENTINEL-1 data, with 6- 

and 12-day revisit intervals, for coherence-based AGB modeling under varying weather conditions 

has yet to be thoroughly explored. 

 

4.3 MaxEnt Implementation 

The MaxEnt software is highly user-friendly, allowing for easy modification of 

parameter settings, which has contributed to its adoption as a standard tool for species distribution 

modeling (Halvorsen, 2013). In this study, multi-source remote sensing datasets were prepared for 

analysis using the MaxEnt algorithm, as illustrated in Figure 1. These datasets included various 

types of data extracted from optical and microwave sensors, such as biophysical parameters (LAI, 

FCover, FPar), forest cover percentage (Vegetation Continuous Field; VCF product), forest fire 

frequency maps, aspect, and slope of the study area. All prediction grids were resampled to a 

uniform spatial resolution of 20 meters, ensuring consistent grid dimensions and geographic 

coordinates across the datasets. 

The forest inventory plots within the study area were provided by DNP. The mean 

aboveground biomass was calculated at 146 t∙ha⁻¹, with a range spanning from 1.0 t∙ha⁻¹ to 485 
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t∙ha⁻¹. The plots were categorized into biomass classes at 50 t∙ha⁻¹ intervals, specifically: 0-50, 50-

100, 100-150, 150-200, and greater than 200 t∙ha⁻¹. Subsequently, each biomass class was 

subdivided into two groups: one used for model training, comprising 80% of the total plots, and 

the other for validation, comprising the remaining 20%. 

The parameter controls within the MaxEnt algorithm are used to identify the most 

influential variables by evaluating the Area Under the Curve (AUC) metric. The AUC value ranges 

from 0 to 1, where a value of 1 indicates perfect discrimination capability of the model, and a value 

of 0.5 suggests that the model performs no better than random chance (Heinanen et al., 2012). 

All predictor variables derived from multi-source datasets were modeled using MaxEnt 

software. Critical variables were identified based on the average percentage contribution across all 

classes. For the quantification of aboveground biomass (AGB), predictor variables with an average 

importance greater than 1% were selected, while those with less than 1% were excluded from the 

MaxEnt modeling process. This approach ensures that only the most influential variables 

contribute to the model, thereby improving its robustness and reliability. 

The experiment and exploration of the value for controlling the parameters in the MaxEnt 

software determined how to assign suitable parameter control in the MaxEnt model, which, as a 

result, could achieve high accuracy in AGB mapping.  

This procedure began by testing the parameter controls, such as the number of background 

points (setting different amounts to 100, 500, 1000, 5000, 7500, 10000, 25000, 50000, 100000, 

and 200000 points). 

The result of the suitable parameter control (the number of background points, and the 

regularisation multiplier value) was a fixed value to quantify AGB mapping with the MaxEnt 

model. 

The MaxEnt model to calculate the probability of biomass in all classes  

(5 classes). It combined all classes to a single map of AGB by using equation1 (Saatchi et al., 

2011b).  

𝐴𝐺𝐵̂ = 
∑ 𝑃𝑖

𝑛𝐴𝐺𝐵𝑖
𝑁
𝐼=1

∑ 𝑃𝑖
𝑛𝑁

𝐼=1
   Equation 1 
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Where  𝐴𝐺𝐵̂ is the AGB prediction per pixel, and 𝑃𝑖 does MaxEnt calculate the 

probability for each AGB range. 𝐴𝐺𝐵𝑖 is the average value within class i. The power n of the 

probability is used to weight the predicted value towards the maximum probability closest to the 

actual value when other probabilities are small. In this case, n = 3, as follows from Saatchi et al. 

(2011 b) ’s study. 

It combined all classes to a single map of AGB by using equation 1. And the uncertainty 

of the AGB prediction per pixel was analysed alongside the root mean square error (Eq. 2 and Eq. 

3)  

𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛= 
σ𝐴𝐺𝐵̂

𝐴𝐺𝐵̂×100
    Equation 2 

 

𝜎𝐴𝐺𝐵̂ = √
∑ (𝐴𝐺𝐵𝑖−𝐴𝐺𝐵̂)2𝑃𝑖

𝑁
𝑖=1

∑ 𝑃𝑖
𝑁
𝑖=1

      Equation 3 

 

Where:  𝐴𝐺𝐵̂ is the AGB prediction per pixel, and 𝑃𝑖 represents the probability 

calculated by MaxEnt for each AGB range. 𝐴𝐺𝐵𝑖 represents the average value within class i. 

𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 represents the uncertainty of the prediction probability from the MaxEnt model. 

The total uncertainty value can be estimated by using Equation 4 and is composed of 4 

sources of uncertainty. This equation is shown below: 

 

𝜀𝐴𝐺𝐵 = (𝜀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + 𝜀𝑎𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦

2 + 𝜀𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
2 + 𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

2 ) Equation 4 

  

The accuracy of the model was evaluated using aboveground biomass (AGB) data from 

the testing dataset. Approximately 20% of the sample plots, set aside specifically for accuracy 

assessment, were used. A scatter plot was generated between the observed aboveground biomass 

from field surveys (x) and the estimated aboveground biomass derived from the model (y). 

Statistical indicators were then calculated to assess the model’s performance and accuracy, 

including the coefficient of determination (R²), root mean square error (RMSE) as expressed in 

Equation (5), and the relative root mean square error (rRMSE) as expressed in Equation (6). 
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𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝐻̅𝑑
𝑖,𝑚−𝐻̅𝑑

𝑖,𝑐

𝐻̅𝑑
𝑖,𝑚 )

2
𝑛
𝑖=1                  Equation 5 

 

rRMSE =
√∑ (𝐻̅𝑑

𝑖,𝑚−𝐻̅𝑑
𝑖,𝑐)

2
𝑛
𝑖=1

√∑ (𝐻̅𝑑
𝑖,𝑚)𝑛

𝑖=1

2
× 100                Equation 6 

 

Where:  𝐻̅𝑑
𝑖,𝑚

  means predicted AGB Model  
                 𝐻̅𝑑

𝑖,𝑐
   means actual AGB  

 

The reliability of the model was assessed using the relative root mean square error 

(rRMSE), following the criteria proposed by Despotovic et al. (2016). 

rRMSE < 10% (Excellent) 

10% < rRMSE < 20% (Good) 
20% < rRMSE < 30% (Fair) 

rRMSE > 30% (Poor) 

 

A lower RRMSE indicates a better model fit, while higher values suggest greater 

deviation between predicted and actual values.  

 

 

 

 

 

 

 

 

 

 

 

 

Tutorial 

This tutorial is created for educational purposes and a training course at GISTDA. 
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Introduction 

 We demonstrate the application of the Maximum Entropy Model, MaxEnt (Phillips et al., 

2006), for estimating the carbon stock in forested areas. The preparation of data is a crucial step, 

which requires understanding several software and file formats such as Microsoft Excel, ArcGIS, 

or QGIS. This will guide users on how to prepare data using different software before running the 

MaxEnt model (JAVA Version). 

 For more detailed instructions on how MaxEnt operates, interprets results, and adjusts the 

advanced options, users should visit https://www.gbif.org/tool/81279/maxent 

 

Maxent is a stand-alone Java application and can be used on any computer running Java 

version 1.5 or later. 

 

 

 

 

What is Machine learning 

Machine learning encompasses the utilization of historical data and experiential 

information derived from practitioners to enhance performance and generate predictive insights 

(Mohri et al., 2018). Its applications are diverse and far-reaching. For example, the species 
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distribution model (SDM) employs interpolation and extrapolation techniques to analyze point 

observations across spatial landscapes, thereby predicting data for regions without direct 

sampling (Franklin, 2010). 

 For predicting aboveground biomass (AGB) distribution in forested regions, both 

parametric methods, such as regression models, and non-parametric approaches, including 

machine learning algorithms, can be employed to extrapolate biomass values across a grid map. 

These methods have been demonstrated to be effective in various studies (Saatchi et al., 2011; 

Baccini et al., 2012; Cartus et al., 2014; Rodriguez-Veiga et al., 2016).  

This study selected two widely used machine learning algorithms for predicting 

aboveground biomass (AGB) due to several advantages. First, these models can integrate diverse 

variable types, combining continuous remote sensing data with discrete GIS dataset s to 

effectively predict AGB distribution. Second, they provide probabilistic outputs, enabling the 

assessment of prediction confidence and the calculation of error at the pixel level. Third, since 

these algorithms are designed to operate with presence-only data, there is no need for absence 

data; instead, they utilize background or pseudo-absence data, such as sampling points. Fourth, 

the models facilitate sensitivity analysis for each predictor variable, allowing researchers to 

determine the influence of individual factors on AGB and identify variables that may be excluded 

to streamline the model. This paper outlines a project aimed at evaluating carbon sequestration in 

forested regions using a machine learning approach—specifically, the MaxEnt model. Although 

the current focus is on forestry and climate applications, the methodology is broadly applicable to 

other domains, such as agricultural assessments and crop yield estimation. 

 

 

Aims 

• To study the process of preparing data for assessing carbon accumulated in forested areas 

using a machine learning model. 

• To assess carbon accumulated in forested areas using the Maximum entropy model. 

 

Study site 

The project utilizes an Area of Interest (AOI) for which sample plot data has been 

collected. The data includes: 

-raster_bnd: a raster file that defines the AOI boundary. 



P a g e  | 20 

 

 
Forest biomass model 22-26 September 2025 

Geo-Informatics and Space Technology Development Agency (Public organization) 

 

-biomass_plot: survey data from 225 sample plots collected by the Department of 

National Parks, Wildlife and Plant Conservation between 2010 and 2016. The coordinates are 

geographic, with a pixel size of approximately 40×40 metres. 

- The Wtotal_ha column in the data contains the calculated biomass values in tons per 

hectare, which are derived from tree volume and height measurements. 

-The vVolume column contains the wood volume in cubic meters for each survey plot. 

For the machine learning model, the sample plot data must be randomly divided into 80% 

for training plots and 20% for testing plots. This data should be saved as a .csv file and 

categorized into five classes based on biomass, such as 0-50, 50-100, 100-150, 150-200, and 

>200 tons per hectare. 
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Figure 5. The training dataset were prepared in .csv format, including examples of plot data and 

the required data structure to be used for model training. 
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Required Software and Datasets 

To prepare the necessary data and run the machine learning model, several software 

programs must be installed: 

• SNAP  

• ArcGIS  

• ENVI or QGIS 

• Maximum entropy model (MaxEnt), which can be downloaded from the American 

Museum of Natural History website. 

https://biodiversityinformatics.amnh.org/open_source/maxent/ 

 

Data preparation for quantifying forest biomass carbon stocks 

 

The preprocessing stage was carried out to ensure that all environmental layers had 

identical dimensions in terms of columns and rows, which is essential for model training. Nine 

specific variable factors (datasets) to be prepared for the machine learning model. The pixel size 

for all data layers must be the same size at 40 metres, or approximately 0.000185 degrees, and 

the data must be extracted using the raster_bnd boundary mask. The required datasets are: 

1. Remote Sensing Data Preparation 

1.1 The ALOS-2 dataset can be downloaded at 

https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm 

Moreover, this is the link to convert the DN value to a backscatter coefficient value. 

https://www.eorc.jaxa.jp/ALOS-2/en/calval/calval_index.htm 

1.2 SRTM can be downloaded at  https://earthexplorer.usgs.gov/ (You should apply to get a 

username and password for downloading any other datasets that you desire.)  

1.3 The Sentinel-2 can extract the variable factors, which relate to the magnitude of AGB, 

such as NDVI, LAI, FCOVER, FAPAR, etc. It can be processed using SNAP software 

or any other method (some datasets are available on Google Earth Engine). 

1.4  SENTINEL-1 C-band  

link → https://step.esa.int/main/doc/tutorials/ 

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://www.eorc.jaxa.jp/ALOS-2/en/calval/calval_index.htm
https://step.esa.int/main/doc/tutorials/
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The document also provides several links for downloading data and tutorials on data 

preparation, including instructions on how to prepare ALOS2 data, SRTM data, and SENTINEL-

2 data using SNAP, as well as a link to Sentinel-1 tutorials.  

 

1.5 Forest type dataset retrieved from the Royal Forest Department, 2017  

 

 

  

 

 

Variable factors 

Biomass training plots were categorized 

into classes at 50 t∙ha⁻¹ intervals. 
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Class1 (0-50 t∙ha-1) Class2 (50-100 t∙ha-1) Class3 (100-150 t∙ha-1) 

  

 

Class4 (150-200 t∙ha-1) Class5 (>200 t∙ha-1)  

 

Figure 7. The probabilities of the 5 AGB classes resulting from the MaxEnt model. 

 

 

 

 

 

 

 

 

 

Underfitting and Overfitting 
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Underfitting occurs when a model is too simple to capture the underlying structure of 

the data. As a result, it performs poorly not only on unseen data but also on the training data 

itself, indicating that the model has failed to learn the relationships between predictors and 

response variables adequately. Several solutions to the problem of underfitting are possible: 

1. A more complex model should be constructed to improve accuracy, such as Machine 

learning (ML), Deep learning (DL), etc. 

2. The predictor variables should be strongly related to the magnitude of AGB. 

Overfitting occurs when a model learns the training data too precisely, including 

noise and random fluctuations, rather than the general underlying patterns. Consequently, the 

model achieves high accuracy on the training data but performs poorly on unseen data, reflecting 

limited generalization ability. Several solutions to the problem of overfitting are possible:  

1. Try a simpler model (linear instead of polynomial regression, or SVM with a linear kernel 

instead of RBF, a neural network with fewer layers/units).  

2. Reduce the dimensionality of examples in the dataset.  

3. Add more training data, if possible.  

4. Regularize the model. 

 

 

 

 

 

 

Figure8. Examples of underfitting (linear model), good fit (quadratic model), and overfitting 

(polynomial of degree 15). (source: Andriy Burkov : The Hundred-Page Machine Learning Book) 
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Forest inventory is a critical procedure for collecting field data, serving as a representative 

sampling method to develop models of aboveground biomass (AGB). In the case of extensive 

forested areas, stratification enhances the efficiency of sampling by determining the appropriate 

number of sample plots based on aboveground biomass density. When foundational data is 

available—such as forest type maps, AGB datasets, or forest canopy density (FCD)—these 

resources can be effectively utilized to plan and stratify forest resource surveys. 

This is a tutorial to calculate the optimal number of forest plots that apply for following 

Winrock International’s CDM A/R sample plot calculator spreadsheet tool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

       Forest Type Map 

(Sakaerat biosphere Reserve, Thailand) 

 
112: Dry Evergreen Forest (DEF) 

122: Dry Dipterocarp Forest (DDF) 

140: Secondary Forest 

Forest resource inventory technique  
for quantifying AGB in forested area 

140 

140 

122 

112 
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Figure 9. Forest type map over Sakaerat biosphere reserve, Nakhonrachasima province, 

North-earthen of Thailand 

 

 

 

  

a. Dry evergreen 

Wet season Dry season  

  

b. Dry dipterocarp 

Wet season Dry season  

 
Figure 10. The forest types in Sakaerat biosphere reserve, Nakhonrachasima province, North-

earthen of Thailand are comprised of Dry evergreen forest and Dry dipterocarp forest. 

 

 

 



P a g e  | 28 

 

 
Forest biomass model 22-26 September 2025 

Geo-Informatics and Space Technology Development Agency (Public organization) 

 

 

 

 

 

 

Forest Types and Ecological Characteristics 
 

The Sakaerat Biosphere Reserve, situated in Nakhon Ratchasima Province in 

Northeastern Thailand, encompasses two primary forest types, each characterized by distinct 

ecological and biomass properties: 

 

1. Dry Evergreen Forest (DEF) – This forest type is distinguished by relatively moist 

conditions and a diverse assemblage of tree species that retain their leaves year-round. The 

persistent canopy facilitates continuous photosynthesis, thereby supporting c onsistent 

aboveground biomass accumulation. Additionally, the rarity of wildfires in DEF contributes to 

biomass preservation and enhances long-term carbon sequestration capacity. 

 

2. Dry Dipterocarp Forest (DDF) – Conversely, DDF undergoes complete leaf 

shedding during the dry season, resulting in seasonal fluctuations in canopy cover and 

photosynthetic activity. This forest is susceptible to annual wildfires, which can cause 

substantial biomass loss and alter carbon cycling dynamics. The recurrent disturbance from 

fires influences species composition, stand structure, and the spatial distribution of biomass 

within the forest. 

 

 

These contrasting ecological processes significantly impact the spatial distribution and 

temporal variability of aboveground biomass in the reserve. Consequently, understanding these 

differences is crucial for informing sampling design, biomass estimation, and the development 

of long-term carbon monitoring strategies. 

 

 

 

Forest type map (RFD, 2018)  
 

Code Forest type 

112 Dry evergreen forest; DEF 

122 Dry dipterocarp forest; DDF 

140 Secondary forest; SF 
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Figure 11. Flowchart of stratification to calculate the number of sampling plots for forest 

resource inventory. 

 

Procedure using ArcGIS 

Using zonal statistics as table to calculate biomass 
statistics for each sub-stratum 

Forest type mapping--Select by Attribute  
(Forest type)  

Export shapefile for each forest type 

Convert shapefile to Raster 

Extract by mask to clip AGB dataset 
 for each forest type 

Analyze biomass density to define sub-stratum 
(Determine the statistics of AGB in each forest type) 

 

Reclassify within each forest type 

 

Determining the number of sample plots using 
Winrock International’s CDM A/R Tool 

Stratum Definition 
Divided forested area into Strata based on Forest type map 

and further into sub-strata using AGB data. 
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Aboveground Biomass Map were sourced from GISTDA (2022), with a spatial 

resolution of 20 meters per pixel (equivalent to 0.04 ha). AGB values were extracted and analyzed 

using ArcGIS software, specifically the “Zonal Statistics as Table” function. 

 
Figure 12. Above‑ground biomass map of Sakaerat biosphere Reserve Forest within  

 study site. 

 

 If you do not have AGB mapping to calculate the number of sampling plots, you can use 

the forest above-ground biomass at a large-scale map (Global scale), such as the ESA CCI and 

the JPL 2020 Global Biomass dataset. 

 

 

 

 

Source of AGB datasets (Global scale) 
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 The AGB datasets can be used to analyze the optimal number of forest plots, 

followed by Winrock International’s CDM A/R sample plot calculator spreadsheet 

tool. 

 

 1. ESA CCI Global Forest Above Ground Biomass https://gee-community-

catalog.org/projects/cci_agb/ 

This dataset, updated to v5.01, provides estimates of forest above-ground biomass for the 

years 2010, 2015, 2016, 2017, 2018, 2019, 2020, and 2021. The data products consist of two (2) 

global layers that include estimates of: 

-Above-ground biomass (AGB, measured in tons per hectare, i.e., Mg/ha) (raster dataset). 

It is defined as the oven-dry weight of the woody parts—including stem, bark, branches, and 

twigs—of all living trees, excluding stumps and roots. 

-Per-pixel estimates of above-ground biomass uncertainty expressed as the standard 

deviation in Mg/ha (raster dataset) 

 

 

 

 

 

 

 

 

 

 

 

(Santoro, M.; Cartus, O. (2025): ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest 

above-ground biomass for the years 2007, 2010, 2015, 2016, 2017, 2018, 2019, 2020, 2021 and 2022, v6.0. NERC EDS Centre 

for Environmental Data Analysis, 17 April 2025. doi:10.5285/95913ffb6467447ca72c4e9d8cf30501.) 

 

2. JPL 2020 Global Biomass Dataset https://ceos.org/gst/jpl-biomass.html 

https://gee-community-catalog.org/projects/cci_agb/
https://gee-community-catalog.org/projects/cci_agb/
https://ceos.org/gst/jpl-biomass.html
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This dataset displays the distribution of above-ground live biomass (AGB) of vegetation 

at a 100m (1-hectare) spatial resolution. The map is created using a large dataset combined with 

machine learning algorithms, including forest inventory data, airborne and spaceborne LiDAR 

waveform samples, and satellite imagery from ALOS-2, SRTM, and LANDSAT. 

 

 

 

 

 

 

 

 

 

1. Three primary strata were defined based on forest type 

a. Stratum-I: Dry Dipterocarp forest (DDF) 

b. Stratum-II: Dry Evergreen forest (DEF) 

c. Stratum-III: Secondary forest (SF) 

 

Each stratum is further divided into sub-strata using AGB data. ArcGIS software is used 

to calculate biomass statistics via the “Zonal Statistics as Table” function. 
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Area of stratum-I = [126,180 (pixel) x 400(m2)]/10,000(m2) = 5047.2 ha. 

Area of stratum-II = [28,530 (pixel) x 400(m2)]/10,000(m2) = 1,141.2 ha. 

Area of stratum-III = [30,406 (pixel) x 400(m2)]/10,000(m2) = 1,216.24 

ha. 
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Code Forest type 

112 Dry evergreen forest; DEF 

122 Dry dipterocarp forest; DDF 

140 Secondary forest; SF 
 

 

 

 

 

 

 

 

 

2. In the Attribute Table, 

select the areas separate by 

forest type using the Select 

by Attributes  function, 

extracting areas by forest 

type using ftype_code. 
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3. Go back to the Table 

of Contents window, and 

export the selected shapefile 

according to the forest type, 

which is in the format of a 

shapefile. 

 

 

 

 

 

 

 

 

 

4. To convert each type 

of  forest  shapefi le  into 

Raster data, you can choose 

the function of feature to 

raster. 
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5. Extract data based 

on the AGB density of 

each type of forest using 

the Extract by mask 

(Spatial Analysis).  

     

 The result will extract 

only the boundary of each 

forest type, allowing the 

biomass values to be used 

for sub-stratum 

classification within the 

area of interest.  

 

To consider the 

distribution of AGB within 

each of type of forest. It 

can use histogram of AGB, 

which displays essential 

values to use the next step 

such as Mean, Standard 

deviation (SD), Maximum 

(Max), and Minimum 

value (Min).  

       

 For example, the 

statistic of AGB within 

Secondary forest can 

extract values as followed 

 

Mean = 118.93 t/ha,  

Std = 31.50 t/ha,  

Min = 24.9 t/ha,  
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Max = 228.34 t/ha. 

 

 

T h r e e  s t r a t a  o f 

Secondary forest (sub-

stratum) were classified by 

c o n s i d e r i n g  t h e  A G B 

statistics within the forest 

boundary as follows: 

 

Stratum1 (Min to Mean-

SD) 

Stratum2 (Mean-SD to 

Mean+SD) 

Stratum3 (Mean+SD to 

Max) 
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R e c l a s s i f y  d a t a  i n 

Secondary forest, which 

used the definition from a 

previous step. 

 

 

6. To summarize values 

of a raster within the zones 

of another dataset  (sub-

stratum)  and report the 

statistical result by using 

Zonal statistics as a Table 

(Spatial Analyst). 
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The analysis in the Dry Dipterocarp Forest (DDF) and Dry 

Evergreen Forest (DEF) areas was conducted according to steps 4-6, 

with biomass statistics for each forest type recorded to enable the 

calculation of the optimal number of sample plots using the Winrock tool. 
 

 

  

 

 

 

 

 

 

 

 

A G B  o f  D r y 

d i p t e r o c a r p  f o r e s t 

boundary can extract the 

statistics values as follows 
 

Mean = 66.12 t/ha 

Std = 13.14 t/ha 

Min = 28.20 t/ha 

Max = 138.93 t/ha 

 

Three strata of Dry 

dipterocarp forest (sub-

stratum) were classified by 

considering AGB statistics 

within the forest boundary 

as follows: 
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Stratum1 (Min to Mean-

SD) 

Stra tum2 (Mean -SD to 

Mean+SD) 

Stratum3 (Mean+SD to 

Max) 

 

  
 To summarize values 

of a raster within the zones 

of another dataset  (sub-

stratum)  and report the 

statistical result by using 

Zonal statistics as a Table 

(Spatial Analyst). 
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AGB of Dry Evergreen 

forest can extract values as 

follows 

 
 Mean = 137.06 t/ha  

Std = 36.12 t/ha 

Min = 24.09 t/ha 

Max = 231.67 t/ha 
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 Three strata of Dry 

evergreen forest  (sub-

stratum) were classified by 

c o n s i d e r i n g  t h e  A G B 

statistics within the forest 

boundary as follows: 

 

Stratum1 (Min to Mean-

SD) 

Stratum2 (Mean-SD to 

Mean+SD) 

Stratum3 (Mean+SD to 

Max) 
 

 

To summarize values 

of a raster within the zones 

of another dataset  (sub-

stratum) and reports the 

statist ic  result  by using 

Zonal statistics as Table 

(Spatial Analyst). 

 
  
  
  

Table1. Summarization of AGB Statistics each of sub-stratums categorized by forest type. 

Type of forest/sub-stratum Area (ha.) Mean Std 

Secondary forest 
Sub-

stratum1 
237.24 73.93 10.48 
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Sub-

stratum2 
775.12 120.74 18.00 

Sub-

stratum3 
204.08 164.35 11.23 

Dry dipterocarp 

Sub-

stratum4 
162.80 47.29 3.86 

Sub-

stratum5 
761.00 66.02 7.26 

Sub-

stratum6 
185.16 86.38 6.93 

Dry evergreen 

Sub-

stratum7 
963.80 86.03 11.18 

Sub-

stratum8 
3,120.00 137.21 21.11 

Sub-

stratum9 
964.48 187.58 10.45 

 

 

 

 

 

 

 

Methodology 

 

1. Stratified Random Sampling: The study area was divided into strata based on 

variables such as forest type. Random plots were selected within each stratum to ensure 

representative coverage. 

2. Sample Size Estimation: Plot numbers were determined from the standard 

deviation of biomass within strata, desired confidence levels (90%–95%), and an acceptable error 

margin (±10%). 

3. Cost Optimization: Sampling design balanced statistical requirements with field 

costs, plot accessibility, and time constraints. 

Calculation of the number of sample plots for measurements within  

A/R CDM Project activities 
Winrock International’s CDM A/R sample plot calculator spreadsheet_tool.  

(https://globalclimateactionpartnership.org/resource/winrock-

internationals-cdm-ar-sample-plot-calculator-spreadsheet-tool/) 
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4. Normal Distribution Assumption: The approach assumes normally distributed 

carbon accumulation, though heterogeneous landscapes may cause deviations. 

5. Permanent Plot Design: Permanent plots were established for long-term 

monitoring, improving precision, and capturing temporal trends. 

 

Open the Winrock International CDM A/R Sample Plot Calculator (Excel) and enter the 

statistical values calculated from Table 1 into the Biomass Stocks-Plots worksheet, using 

hectares as the unit of measurement. 

 

Step 1. To indicate the Level of error and Confidence error 

 

 

Step2. Input Stratum information 
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Enter the statistical values for each sub‑stratum, calculated using forest type data and 

AGB accumulation data for that sub‑stratum (expressed in hectares). Once the data have been 

entered, the computation will be performed automatically using Equation 1. 

 

 

 

 

 

Step3. Calculate the intermediate results. 
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To conduct a preliminary assessment of whether the calculated value of n is greater than 

or equal to 30, where n represents the total number of plots required to achieve the specified level 

of precision for the project area. 

If n is less than 30, the calculation will be repeated using Equation 1, with the degrees of 

freedom set to n – 1 and the t-value obtained from the Student’s t-distribution table. The resulting 

value will be displayed in Cell P21. 

 

 

 

 

 

 

 

 

Step 4. Results. 
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For the CDM A/R Tool, if the sampling area is large—defined as exceeding 5% of the 

total study area—the number of sample plots obtained from Equation 1 shall be adjusted using 

Equation 3, with the result displayed in Cell S21. Conversely, if the sampling area is small—less 

than 5% of the study area—the calculation shall be performed using Equation 2, and the result 

will be displayed in Cell U21. 

 Finally, the number of plots to be randomly selected within each sub-stratum shall be 

calculated using Equation 4. 

 

 

 

 

Step 5. Final estimate of plots 
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